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Brownian dynamics simulation of a hard-sphere suspension
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In this paper we discuss the nonequilibrium shear viscosity of a suspension of hard spheres that is modeled
by neglecting hydrodynamic interactions in a consistent way. The aim is to establish the true capabilities of this
model in predicting the properties of real suspensions. A Brownian dynamics algorithm is used to simulate the
movements of hard spheres immersed in a Newtonian solvent in a nonequilibrium steady shear flow. A new
development is the treatment of the overlap of spheres as elastic collisions, to simulate the no-flux boundary
condition on the surfaces of rigid particles. This algorithm is compared with other algorithms suggested in the
literature, and is shown to be simple and accurate even for two spheres at close distance. This provides an
algorithm that is very suitable for calculating the pair distribution function and especially its hard-sphere
contact value, both in equilibrium and nonequilibrium simulations. The algorithm is used to study the non-
equilibrium stationary shear flow in the low shear limit. The simulations correctly reproduce the exact low-
density limit of the perturbation of the pair distribution function. The perturbation of the pair distribution
function in shear flow can be extracted from the simulation data and used to compute the stationary shear
viscosity for a system of diffusing hard spheres without hydrodynamic interactions. This yields a flow curve for
this model system including the low shear limit. It is found that the model shear viscosity fails at intermediate
and high shear rates as can be expected from the neglect of hydrodynamic interactions, but also in the low
shear limit at small and moderate volume fractions.@S1063-651X~99!14002-9#

PACS number~s!: 05.70.Fh, 61.20.Ja, 51.20.1d
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I. INTRODUCTION

Systems of hard spheres have always been the subje
extensive research. In statistical physics the hard-sphere
tem is studied because it is one of the simplest systems
retains many of the complexities of many-particle system
The hard spheres are studied in the context of classical
tistical physics, quantum or relativistic many-body theory,
the theory of phase transitions. In rheology the hard-sph
system often is studied as a first approximation to the pr
erties of colloidal suspensions. Real suspensions are
scribed with respect to their deviations from hard-sphere
havior.

In rheology the model hard-sphere system consists of h
spheres of equal size dispersed in a Newtonian solvent
viscosityh0. The size of the colloidal particles is assumed
be small enough such that inertial and gravitational effe
are negligible, and the velocity of the flow is such that t
Reynolds number is low and turbulence is absent. This s
tem was theoretically studied through the pioneering work
Batchelor@1,2#, while important measurements were done
Van der Werff and De Kruif@3#, with viscosity measure-
ments dispersions of silica spheres in cyclohexane at var
particle sizes and concentrations, and Ackerson and P
@4#, who studied the nonequilibrium structure of suspensi
in shear flow. In theoretical work this model system is r
orously described by theN-particle hard-sphere diffusion
equation, which includes the diffusion and hydrodynamic
teractions of hard spheres, and possibly an external fl
field. Proper understanding of the hard-sphere suspensio
indispensable if a comparison with a real-life suspension
to yield additional information, which explains the contin
ous theoretical work on hard-sphere suspensions.

The main difficulty with the statistical theory of suspe
PRE 591063-651X/99/59~2!/2175~13!/$15.00
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sions is that the hydrodynamic interactions of the colloid
particles are not pairwise additive as is the case in class
theories of molecular fluids. In suspensions, a change in
sition or velocity of a suspended particle instantaneously
fluences the entire flow field and the velocities of all oth
particles. One approach is to use series expansions in
particle number density to obtain results at higher densit
but this has not been a successful approach, because
computations become extremely cumbersome even at m
erate volume fractions. A different approach is to restore
connection with classical statistical physics, and to model
suspension by neglecting the hydrodynamic interactions,
at the same time, to take into account the pairwise ha
sphere interactions rigorously. The basic idea of this
proach is that at high densities the hard-sphere interact
may become dominant, and that the properties of the sus
sion are determined largely by the hard-sphere packing st
tures. This idea has been conjectured by several aut
@5–9#, and has been applied, in various forms, fairly succe
fully in the low shear regime.

If hydrodynamic interactions are neglected, an exact
pression for the shear viscosity of a hard-sphere suspen
can be given in terms of the nonequilibrium pair distributi
function @10–12,9#. This will be discussed in Sec. II. Th
main theoretical challenge then reduces to computing
pair distribution function in shear flow. In this paper we w
take the route of computing the nonequilibrium pair distrib
tion function from Brownian dynamics simulations that a
equivalent to the basic hard-sphere suspension model. In
way it is possible to rate the modeling of a hard-sphere c
loidal suspension as a collection of diffusing hard spher
without blurring the comparison with series expansion tru
cations or equation three body closures@13,14#.

In recent years there seems to be a growing unanimity
2175 ©1999 The American Physical Society
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2176 PRE 59P. STRATING
suspension models without hydrodynamic interactions c
not yield correct results. An important reason is that sh
thickening behavior has been found in experiments@15,16# at
high shear rates, and in simulations of suspensions with
drodynamic interactions@17,18#. This shear thickening be
havior seems to be rooted in hydrodynamics, because it
not been found in simulations of models lacking hydrod
namic interactions so far, and because a possible hydr
namic mechanism for shear thickening at high shear r
was conjectured in@19#.

However, before the model suspension without hydro
namic interactions is discarded as a model for real susp
sions, it should be tested thoroughly. The aim of this pap
and a previous paper on the stress tensor@12#, is to treat the
model suspension without hydrodynamic interactions in
completely consistent way without additional approxim
tions or corrections. In our opinion only such a procedu
may establish definitely whether or not the model falls sh
in describing real suspensions.

The new aspects in this paper are the following. First
Sec. II, an exact expression for the shear viscosity in term
the pair distribution function is given and shown to be va
at all shear rates. Because the expression for the shea
cosity requires the calculation of the nonequilibrium pair d
tribution function, we will develop a new method to de
with hard-sphere overlaps in Brownian dynamics simulatio
in Sec. III. This method is discussed and compared to
other simulation algorithms, and it is concluded that the n
algorithm is the most appropriate algorithm. In Sec. IV w
discuss the application of the formalism to nonequilibriu
shear flow simulations, especially in the low shear regim
The shear viscosities obtained from the simulations are c
pared with experimental work on real suspensions.

II. STEADY-STATE SHEAR VISCOSITY

In this paper we aim at calculating the relative zero sh
viscosity for a hard-sphere suspension which is modeled
neglecting the hydrodynamic interactions in a consist
way. Although hydrodynamic interactions are neglected,
solvent still plays an important role, because it corrobora
the diffusion of the particles and supplies friction that dra
the colloidal particles along with the flow. This is sometim
called the free-draining model of suspensions@5#. The time
evolution for this model is described by theN-particle
Smoluchowski equation@20#

]

]t
PN~ t !52(

i 51

N
]

]r i
•Fui P

N2D0

]

]r i
PN1

Fi

z0
PNG .

~2.1!

In this equation we have introduced theN-particle distribu-
tion functionPN(r1•••rN ;t), the Stokes’ friction coefficient
z0, andD0, the ‘‘free’’ diffusion coefficient of a single par-
ticle in the solvent given byD05kBT/z0 (kB is the Boltz-
mann constant,T is the temperature!; ui is the ~local! flow
velocity at the position of particlei , andFi is the total force
on particlei . From a macroscopic point of view, i.e., whe
the colloidal particles are considered to be microscopic,
evolution equation has a role similar to the role of the Lio
ville equation in statistical mechanics.
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The macroscopic shear viscosity for this model susp
sion can be defined as the ratio of thexy components of the
stress tensor and the shear rate. Well-known expression
the stress tensor in colloidal suspensions of spherical
ticles are given by Batchelor@2,1# and Brady@11#. In Refs.
@12# and @21# the relations between the different contrib
tions in the stress tensor expressions of Batchelor and B
were demonstrated.

In our model suspension of identical hard spheres,
solvent gives a contributionh0 to the viscosity. If inertial
effects are neglected, there are no kinetic contributions to
stress tensor and therefore to the viscosity. Also, if hydro
namic interactions are omitted, single-particle hydrodyna
ics remains and the stresslet contribution takes on its sin
particle form at all densities and shear rates. This gives
Einstein contribution to the viscosity@22,23# according to a
calculation as in Landau and Lifshitz@24#. The remaining
part of the stress tensor can be considered either as an i
action or ‘‘Brownian’’ contribution, as discussed in@12#.

So, defining the shear viscosityh as the ratio of thexy

components of the stress tensor and shear rateġ, we obtain
for this model suspension the following expression for t
steady-state shear viscosity

h5h01
5

2
wh02

1

2

kBTn2

ġ
E xy

r
d~r 2s!g~r !dr .

~2.2!

In this expression, which is similar to expressions of, e
Brady @11# and De Schepper@10#, n is the overall particle
number density andg(r ) is the pair distribution function.
The hard-sphere diameters will be used as the length scal
in this paper, so we sets51. The pair distribution function
is a well-known reduced form@25# of the N-particle distri-
bution functionPN in Eq. ~2.1!. The d function in the inte-
grand reflects the nondifferentiable character of the interp
ticle potential. It is emphasized that this expression is ex
for this model of a suspension of hard spheres, becaus
possible contributions to the stress tensor are considered.
possible to maintain@5# that in Eq.~2.2! the hydrodynamic
contributionh01 5

2 wh0 may be replaced byh` , the viscos-
ity at infinite steady shear rate~e.g., as obtained from the
Krieger-Dougherty formula@26#!, thus improving the mod-
el’s results in certain regimes. This however, it is not cons
tent with the model of single-particle hydrodynamics, a
beclouds the rating of the present model without hydro
namic interactions as a model for real suspensions.

The task remaining is to calculate the nonequilibrium p
distribution functiong(r ). This task is complicated becaus
in shear flowg(r ) is both a function of the number densit
and the shear rate: the normal equilibrium pair distribut
~as obtained, e.g., from the Percus-Yevick equation! gives no
contribution to the viscosity due to its spherical symmetry.
theoretical approach is to derive an equation forg(r ) from
Eq. ~2.1!. The resulting equation, however, involves u
known higher order distribution functions, requiring equati
closures@13,9#. In this paper we will take a different path b
using computer simulations to computeg(r ). But first we
will discuss some general properties of the pair distribut
function in the case of shear flow.
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A. Low shear limit: Perturbation expansion of g

In the limit of low shear rates, it can be shown@27# that
the pair distribution function, being a function only ofr , the
volume fractionw and the shear rate~of which a dimension-
less measure is the Pe´clet number Pe5 1

4 ġs2/D0 , see also
Sec. III A!, up to first order must have the form

g~r !5g0~r !12Pe
xy

r 2
g1~r !1O~Pe2), ~2.3!

with r 5ur u, and assuming a regular series expansion ofg in
the shear rate.

Only the perturbation ofg(r ) gives a nonzero contribu
tion to the shear viscosity. Performing the angular integ
tions in Eq.~2.2! we find for the relative zero shear viscosi

h

h0
511 5

2 w2 36
5 w2g1~1!. ~2.4!

In this expressiong1(1) is the contact value of the first-orde
perturbation of the pair distribution function. In order to r
produce the experimental results we necessarily need a n
tive contact value forg1(1) with an increasing magnitude fo
increasing volume fractions. The zero number density li
of g1(1) was calculated by Batchelor@28# from the two-
particle Smoluchowski equation. An equation for the lo
density pair distribution functiong(r ) can be obtained from
Eq. ~2.1! by usingu(r )5ġyex , integrating over all particle
coordinates but two, and discarding all terms of higher or
in the number densityn. This yields the equation

¹•~ ġyexg22D0¹g!50, ~2.5!

with the boundary conditionr̂•@2D0“g2ġyexg#50 for r
51. In a weak flow expansion, the pair distribution functi
will have the form of Eq.~2.3!. With this ansatz, the two
particle Smoluchowski equation simplifies to

g191
2

r
g182

6

r 2
g150, ~2.6!

andg18(1)51. The solution of this equation is

g1~r !52
1

3r 3
, ~2.7!

which predicts a nonequilibrium low shear, low-density co
tact value of2 1

3 . This result provides an important check o
the nonequilibrium simulations.

B. High shear rates: Expansion in spherical harmonics

A more general approach to Eq.~2.2! is the following. At
all shear rates,g(r ) can be expanded in spherical harmon
@29# as

g~r !5(
l 50

`

(
m52 l

l

Glm~r !Ylm~u,f!. ~2.8!

The ~complex! Ylm(f,u) are orthogonal on a sphere
-

ga-

it

-

r

-

E Yl 8m8
* YlmdV5d l 8 ldm8m , ~2.9!

(V denoting the angular variables!, and satisfy Yl ,2m

5(21)mYlm* . With the identity

xy

r 2
5cosf sinf sin2u5

1

i
A2p

15
~Y222Y2,22!

5
1

i
A2p

15
~Y2,22* 2Y22* ! ~2.10!

and the orthogonality, we can rewrite the angular integra
Eq. ~2.2!,

E xy

r 2
g~r !dV

5E 1

i
A2p

15
~Y2,22* 2Y22* !

3(
l 50

`

(
m52 l

l

Glm~r !Ylm~u,f!dV

5
1

i
A2p

15E ~Y2,22* 2Y22* !@G2,22Y2,221G22Y22#dV

5
1

i
A2p

15E ~Y2,22* 2Y22* !@ 1
2 ~G2,221G22!~Y2,221Y22!

1 1
2 ~G2,222G22!~Y2,222Y22!#dV

5
1

i
A2p

15E ~Y2,22* 2Y22* !

3@ 1
2 ~G2,222G22!~Y2,222Y22!#dV. ~2.11!

The last line shows that the viscosity in our model, i.e.,
hydrodynamic interactions are neglected, is only depend
on ther, Pe-dependent amplitude of the part of the pair d
tribution function that has the functional formY2,22Y2,22
;cosf sinf sin2u. This combination was assumed in th
low shear expansion in Eq.~2.3!, but we have now shown
that the calculation for the shear viscosity through a spec
component of the nonequilibrium pair distribution function
valid for all shear rates.

In the remainder of this paper we will defineg1
5g1(r ,Pe) as the amplitude function of the functional for
cosf sinf sin2u, without reference to the low shear expa
sion. As a result we can write the relative shear viscosity
the simple form

h~Pe!

h0
511

5

2
w2

18

5
w2

g1~1,Pe!

Pe
~2.12!

valid for this suspension model at all shear rates.

III. SIMULATION ALGORITHM

In computer simulations of many particle systems, t
movements of the individual particles are followed in tim
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In molecular dynamics the Newton equations of motion
integrated in time, as is appropriate for gases and ato
liquids. Well known are the simulations of the hard-sphe
gas by Alder and Wainwright@30#. When applied to suspen
sions, both colloidal particles and solvent particles have to
simulated, leading to unacceptably long computation tim
Recently, interesting results for suspensions have been
ported by Koelman and Hoogerbrugge@31# using solvent
particles with simplified dynamics. In Brownian dynami
the Langevin equation is simulated, which describes col
dal particles that are subject to small random forces, wh
model the interaction with the solvent. Thus the solven
eliminated from the simulation, reducing the number of d
grees of freedom enormously. If the solvent friction is hi
and the velocities of the~colloidal! particles are strongly
damped, one can simplify the dynamics further, assum
instantaneous equilibrium in momentum space and consi
ing only the differential equations for the positions. The m
tion of a particle is then described with a Langevin-ty
equation in which a random displacement term generates
diffusion process. This Brownian dynamics simulation alg
rithm originates from the work of Ermak and McCammo
@32#. If hydrodynamic interactions are included through t
Oseen tensor, the simulation is referred to as a Stoke
dynamics simulation, mainly developed by Bossis and Bra
@33#, and applied to monolayers of spheres. Only recen
this method was applied to three-dimensional colloidal s
pensions in the work of Phung@17#. A completely different
approach is to solve the Stokes flow completely with
boundary integral equation method, as in the work of To
@34#. However, inclusion of Brownian motion~in the sense
of thermal movement! within this framework is not straight
forward, and the simulations are extremely costly regard
computation time when many particles are involved, es
cially in three spatial dimensions.

As mentioned earlier in the Introduction, we are interes
in the properties of the system described by theN-particle
Smoluchowski equation~2.1! without hydrodynamic interac
tions. This equation describesN freely diffusing particles
within a volumeV. The diffusion of a particle is only limited
by the boundaries as set by the otherN21 particles. The
N-particle Smoluchowski equation is a Fokker-Planck eq
tion for the distribution function of the stochastic positio
variables. It has been known for some time that for ev
Fokker-Planck equation there is a corresponding stocha
differential equation~Langevin equation! with appropriate
stochastic properties, such that the generated distribu
functions are equivalent to the solutions of the Fokk
Planck equation@35#. The task is to find the Langevin-typ
equation that is equivalent to theN-particle Smoluchowski
equation. The pair distribution function may be extract
from such a simulation, rather than calculated analytica
The advantage of the simulation is that the results are
sense exact for the model~apart from numerical or statistica
error, or finite simulation size effects!, while analytical meth-
ods involve approximations such as truncations of infin
series, or introduction of equation closures.

The Brownian dynamics method described below sho
much resemblance with a Monte Carlo simulation to de
mine the configurational partition function@25#. In this pa-
per, however, it is adynamicsimulation, because the rando
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displacements that are carried out in Monte Carlo simu
tions, are not just invented to sample the configuration sp
but simulate the actual diffusion of particles in time. Anoth
difference is that an acceptance criterion is missing in
simulation, as we will see later. The simulations describ
show close resemblance to the work described by Heyes
series of papers@5,36,37#, but in these papers the viscosity
computed from the simulations in a different way.

For hard-sphere gases, molecular dynamics simulat
are numerous. In hard sphere gases the trajectories inclu
successive collisions of particles can be calculated exac
An advantage of Brownian dynamics over molecular dyna
ics is that the simulation~and theoretical! problem of the
heating up of the system in nonequilibrium simulations do
not occur, because the velocities of the colloidal partic
have been eliminated by assuming equilibrium in the m
mentum variables. A disadvantage of the elimination of v
locities is that there is no obvious way of dealing with t
hard sphere interactions anymore. To avoid this proble
most Brownian dynamics simulations~without hydrody-
namic interactions! use differentiable potentials, such as t
Lennard-Jones potential@38–40#. Although the calculation
of the interparticle forces is time consuming, the impleme
tation in the simulation algorithm is straightforward. Th
hard-sphere suspension without hydrodynamic interac
was recently considered by Cichocki and Hinsen@41# and
Schaertl and Sillescu@42#. Their ~equilibrium! simulation al-
gorithms will be discussed shortly. These programs were
veloped to establish self-diffusion coefficients and pha
transitions. In this paper we will see that the treatment
particle overlaps in these programs is inappropriate for n
equilibrium simulations of diffusing hard spheres in she
flow, and we will present an elegant alternative.

A. Diffusion

The method of Brownian dynamics is widespread and
will only discuss the basic equations. In a finite boxN par-
ticles with diameters are followed in time. First importan
parameter is the volume fractionw related to the particle
number densityn as 1

6 ps3n.
Diffusion is simulated by small random displacements

each time step, based on a Langevin-like equation,

ṙ i5u~r i !1
Fi

z0
1Dr i~ t !, ~3.1!

whereu is the local solvent velocity,z0 is the Stokes friction
coefficient ~related to the solvent viscosityh0 as z0
53ph0s), Fi the force on the particle due to other particl
or an external field, andDr i(t) are small random displace
ments with zero mean. Space is scaled with the particle
ameters, and we introduce as unit of time the structur
relaxation time

ts5
s2

D0
, ~3.2!

which sets the diffusion time scale. The dimensionless timt
is defined ast5t/ts .
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After time Dt the probability for a stepDr is a Gaussian
distribution function with root mean squared
5A2D0Dt/s25A2Dt @35#:

P~Dr !5
1

~4pDt!3/2
expS 2

1

2
@~Dx2/2Dt!1~Dy2/2Dt!

1~Dz2/2Dt!# D , ~3.3!

in accordance with the Einstein relation

uDr u256D0Dt56s2Dt. ~3.4!

The diffusion is superposed on a shear flow with sh
rate ġ. In dimensionless units

ũ~ r̃ i !5u~r i !
ts

s
5ġyiex

ts

s
54 Peỹiex , ~3.5!

with ex the unit vector in thex direction. The dimensionles
Péclet number Pe in this paper is defined as

Pe5
1

4

ġs2

D0
, ~3.6!

and measures the relative motion of two particles due
shear flow as compared to relative motion due to diffusi
The factor 1

4 is added to conform to the usual definition P
5ġa2/D0 (a5 1

2 s is the particle radius!.
To reduce the effects of the finite simulation size, perio

boundary conditions are applied: the particles are sup
mented with periodic images in all spatial directions. In t
case of shear flow we use the Lees-Edwards construc
@43#. This means that the image boxes move with the sh
flow according to their positions.

B. Particle overlaps or collisions

In one time step all particles are moved at the same t
with a random displacement~and in nonequilibrium simula-
tions a displacement due to shear flow!. After the displace-
ment particles may overlap, and the displacements of th
particles somehow have to be adjusted. We discuss t
approaches, one by Cichocki and Hinsen@41#, one by
Schaertl and Sillescu@42#, and a new approach.

1. Cichocki and Hinsen method

In the Cichocki and Hinsen simulation in each step o
one particle is~Gaussian! displaced in timeDt/N. If an
overlap occurs, the particle is restored to its previous p
tion, which is exactly the procedure of Monte Carlo simu
tions. In nonequilibrium simulations, for which displaceme
due to shear flow may occur, this algorithm poses so
problems. This can be seen as follows. Suppose all Brow
particles in row in one time step perform an illegal, overl
move, and are kept at their original position. After one tim
step, all particles are at the same position, but the im
boxes have moved. This may cause overlap with image
ticles even with fixed particle positions. Although this see
r
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a rare situation, it was found in practice that problems w
the time marching scheme occurred even at moderate n
ber densities.

2. Schaertl and Sillescu method

In the Schaertl and Sillescu simulations all particles
displaced simultaneously. The displacements are alway
the same magnitude and the direction is only one of
Cartesian directions. After a number of steps this proced
has diffusion statistics. If an overlap has occurred betw
two particles, these two particles are separated to conta
the direction of their relative vector~this algorithm was also
proposed in@5#!. A second correction must be done if pa
ticles still overlap after the first correction step, either b
cause there was a three particle overlap in the first place
because a secondary overlap was generated by the co
tion. Such secondary overlaps occur easily, especially at h
volume fractions. Schaertl and Sillescu ignore second
overlap, because its correction is time consuming, and t
are mainly interested in a very fast algorithm. Large err
are made at high volume fractions and at long simulat
times, that must be corrected through the introduction of
fective volume fractions.

We feel that allowing overlaps is not the way to deal w
the subtleties of hard-sphere systems in an age of unriv
computing power, and we modify the Schaertl and Silles
algorithm the following way. First, the displacements a
sampled from a Gaussian to simulate diffusion statistics fr
the start. Second, secondary overlaps are treated similar
primary overlaps, i.e., the algorithm is repeated. Obvious
the algorithm is slowed down by these adjustments. Ho
ever, we find that the number of repetitions of the over
correcting loops is typically between 1 and 4 at volume fra
tions up to 0.55, provided the displacement step is not c
sen too large. Moreover, it is found that a nonoverlapp
state is always corroborated, and there is no need to in
duce effective volume fractions to correct the results. In t
paper we will refer to this modified Schaertl and Silles
algorithm still as the Schaertl and Sillescu algorithm.

3. Elastic collision method

In this paragraph we discuss a novel method based on
following observation. The random displacement of a coll
dal particle away from any boundary is sampled from
Gaussian as discussed above. Close to a restricting w
however, the random displacement should be sampled fro
distribution function that is the solution of the Smoluchows
equation near a boundary, i.e., with a no-flux boundary c
dition, instead of a ‘‘free’’ Gaussian. Therefore we need
method that generates the no-flux boundary condition. In
simulation we use elastic binary collisions to adjust the p
sitions after an overlap detection, because the no-flux bou
ary condition eventually is the result of elastic collisions. A
each particle has moved by an amountDr i in a time stepDt
it can be ascribed a ‘‘velocity’’vi5Dr i /Dt. The procedure
is now straightforward to calculate the corrected displa
ments with two-particle collision dynamics. The elastic co
lision laws prescribe conservation of energy, momentu
and angular momentum, the combination of which yields
binary collision laws
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v1* 5v11~ r̂21•v21! r̂21, ~3.7!

v2* 5v22~ r̂21•v21! r̂21. ~3.8!

These relations describe the instantaneous velocity of
particles just after collision in terms of precollision quan
ties. The vectorr̂21 is the unit relative position vector at th
moment of collision andv21 the relative velocity before the
collision. Implementation of these collision laws in a Brow
ian dynamics algorithm will conserve the center of mass d
placement and rotational displacement, which may be v
important in the case of shear flow, where a net displacem
or rotation is very probable. Moreover, this algorithm is co
sistent with the derivation of the Brownian contribution
the stress tensor in Eq.~2.2!.

There are two methods to implement the elastic collis
method. One method is to disregard any order in the oc
rence of collisions in one time step. With this implemen
tion all particles are displaced simultaneously, after wh
overlapping pairs are simply sought and corrected in the
der of detection. This yields a simple and efficient algorith
A second method is to take into account the order of co
sions more or less rigorously. In that case all collision tim
for overlapping pairs have to be computed and ordered
disadvantage is that after the first collision/overlap correct
the list of collision times has to be recomputed. In spite of
disadvantages it was necessary to implement the se
method rigorously, because it was found that only the rig
ous method produced the correct close contact statistic
described in the next section.

4. Equilibrium comparison of the algorithms

In Fig. 1~a! we plotted the equilibrium pair distribution
function in simulations with the three different overlap co
rection algorithms, with 512 particles at a volume fraction
w50.45, and a mean squared step ofd50.01s. If we com-
pare the results of these three algorithms, it is seen tha
Schaertl and Sillescu algorithm strongly increases the po
bility to find two particles at contact, resulting from puttin
pairs at contact after each overlap. This increased con
value decreases the possibility to find pairs at different re
tive distances. The Cichocki and Hinsen method and
elastic collision method produce the same pair distribut
function. The difference can be seen better from a closeu
the contact region, shown in Fig. 1~b!. While from Fig. 1~a!
the difference seems small, it is now observed that for
Schaertl and Sillescu method, even disregarding the con
value point which has an absurd value, an estimation of
contact value based on the remaining points will be off
almost 10%. It is noted that only the rigorous elastic collisi
method produces the same close contact statistics as
Cichocki and Hinsen method. Every different collisio
mechanism, or order change of collisions, influences mor
less the shape of pair distribution function in the cont
region. This has been checked with various~erroneous! col-
lision mechanisms and collision orders.

Because of the importance of the hard sphere con
value in the second part of this paper, we conclude that
rigorous elastic collision algorithm is the most appropria
algorithm for our purposes. The algorithm proposed
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Cichocki and Hinsen@41# cannot be extended to nonequilib
rium simulation without an additional overlap correctio
method, while the algorithm of Schaertl and Sillescu@42# is
inferior in the region of interest, knowing that even at mo
erate volume fractions the pair distribution function vari
rapidly in the region close to contact. Moreover, it can
expected that deficiencies in the overlap correction met
will have a larger effect on the results in nonequilibriu
simulations, because in nonequilibrium simulations the av
age net rotation or displacement of a pair of particles is n
zero.

With respect to the speed or computational efficiency
the algorithm we can say the following. First we find that
algorithms are comparable in speed. Most important lim
tion of the simulations is that the number of pairs is quadra
in the number of particles. This, however, can be larg
resolved by keeping track of neighboring particles
‘‘neighbor lists’’ in the familiar way @44#. If the rigorous
elastic collision is implemented with neighbor lists and lis
of collision times that are updated carefully, a very fast sim

FIG. 1. Comparison of the equilibrium pair distribution functio
from computer simulations with three different particle overlap c
rection algorithms. The simulation size is 512 particles at a volu
fraction of w50.45.~a! Global view and~b! closeup in the contac
value region. Note the high contact value~between 7 and 8! of the
Schaertl-Sillescu method in~a!.
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lation code results that is easily capable of simulating sev
thousands of particles on a modern work station.

Summarizing we say that the rigorous elastic collisi
algorithm seems most appropriate for our purposes in c
parison with the algorithms proposed by Cichocki and H
sen@41# and Schaertl and Sillescu@42#. The elastic collision
method makes an accurate and fast simulation of Brown
hard spheres possible. No overlaps ever occur, even at
densities, which is a serious problem in the simulations
Schaertl and Sillescu. Also, overlap-related infinite loops
not occur in the simulations. Only with the elastic collisio
method are collisions taken into account accurately with c
servation of net displacement and rotation, which may
crucial in nonequilibrium simulations. As compared to ha
sphere gas simulations, the only deficiency is that partic
may pass parallel without sensing each other. For small t
steps however, this is a rare event.

IV. COMPUTER SIMULATIONS

A. Calculation of the pair distribution function
from finite box simulations

The pair distribution function can be found as follow
@44#. The number of particles found in a volumedr at dis-
tancer from a specified particle isng(r )dr . The number of
particles in a spherical shell of widthdr is

dNr5ng~r !4pr 2dr. ~4.1!

Counting all pairs in the simulation box gives~twice! g(r ).
In a finite box this is not completely correct. Because the b
containsN particles, the number of particles that can
found elsewhere in the box when one particle has been fi
in the origin, isN21. To obtain a pair distribution function
that approaches 1 at large separation or low volume fract
we should normalizeg with N21 instead ofN. This correc-
tion is negligible for large numbers of particles.

The perturbation of the pair distribution function is le
easily found due to statistical error for two reasons. First,
perturbation is small by itself at low shear rates, because
proportional to the shear rate, and second, the perturbatio
not only a function ofr but of r . However, the latter objec
tion can be avoided, because in Sec. II B we showed tha
viscosity in our model is determined completely by the a
plitude of a combination of spherical harmonics proportio
to cosf sinf sin2u. The amplitude functiong1(r ) can be
found from g(r ) by multiplying with cosf sinf sin2u
(5xy/r2) and integrating over all anglesf andu. Thus, ifg is
written

g~r !5g0~r !1
xy

r 2
g1~r !, ~4.2!

the number of particles in a volumedr is

dNr ,f,u5nS g0~r !1
xy

r 2
g1~r !D r 2 sinu dr df du.

~4.3!

After multiplying with cosf sinf sin2u and integration over
the angles, only the second term gives a contribution
al
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dN̄r5
4

15 png1~r !r 2dr. ~4.4!

Following this procedure in the simulation,g1(r ) can be
determined. The result can be used in the equation for s
viscosity Eq.~2.2!. In fact the above procedure is a dire
evaluation of the angular integrations in Eq.~2.2!.

To overcome statistical noise in the pair distribution fun
tion, one has to average over all particles in the box and o
a number of time steps. The number of time steps neede
reduce the~relative! statistical error in the perturbation of th
pair distribution function rapidly increases with decreasi
shear rate, because the amplitudeg1(r ) is proportional to the
shear rate.

B. Simulation details

1. Simulation box size

Simulations were done in a cubic box of lengthL with N
particles. For the majority of the simulations the numberN
was chosen as 4m3 wherem is an integer number, becaus
there are four particles in the fcc unit cell in three dime
sions. These particle numbers are compatible with an
structure. In a finite system different particle numbers m
prohibit the formation of a long-range fcc structure. Effec
of the choice particle number can expected to be signific
at volume fractions where phase transitions play an imp
tant role. It can be expected that a Brownian dynamics sim
lation is somewhat less dependent on the system size
molecular dynamics simulations, because velocity corre
tions induced by the periodic boundaries are absent and
spatial correlations remain. Even with 32 particles reas
able results were obtained at most volume fractions, altho
the system in this case approximately consists of three
ticles in all directions. If the particles are in a random sta
(w,0.494), hardly any influence of the box size was fou
for N>108. Nevertheless, most simulations were perform
with 256 to 2048 particles. Forw.0.49 the influence of the
box size will increase, because of the possibility of~partial!
transitions towards states with long-range order.

Increasing the number of particles in the simulation
duces the statistical error in the pair distribution function
one time step, possibly allowing a smaller number of sim
lation time steps. However, increasing the number of p
ticles reduces the error in the pair distribution function co
tact value only to a moderate extent: although the numbe
pairs to determine the pair distribution function increas
quadratically with the number of particlesN, the number of
pairs at contactincreases only linearly withN, because the
number of neighbors at contact is limited to 12 at clos
packing. So to reduce statistical error in the pair distribut
function contact value, increasing the number of time step
more efficient than increasing the number of particles,
cause of the more than linear increase in computation t
with the number of particles.

2. Simulation time

A simulation run is characterized by the square root of
varianced5A2Dt of the Gaussian distribution from whic
the random displacements are taken. This is equivalen
fixing the time stepDt. The varianced is the average



o
r

ll
es

th
I

i

ne
e

y

t

by
ra

n
to
la
rin
o
o
fo
a

e
e
al
f t
ve
ys

fo
ib
an
n
ie

in

u
th

es
o

ce

h
th
-
se
le
lli
ru
th
u
h

m-
e.

n
his
tion
on-
by
um
esti-

re
nd

to
xi-

has

l-
e

en-

lib-

the
not
ady
ex-

is
ibil-
d
te a
re-
t in
he

e-
re-
De
is-
his
istic

vior.

ll-
and

low
c-

-
In

2182 PRE 59P. STRATING
squared displacement of a particle and must be chosen t
small compared to the particle diameter. Typical values fod
vary from 0.1s at very low volume fractions to 0.0075s at
very high volume fractions. At high volume fraction sma
displacement steps are favorable, because the probabiliti
an overlap of three or more particles~computationally ex-
pensive! and of an overlapping passage of two particles wi
out collision detection, increase at high volume fractions.
most simulations we fixed the time step atDt50.5
31024ts by choosingd50.01s, where s is the particle
diameter. For comparison, after conversion of units this
five times smaller than the time step of Schaertl@45#.

Equally important is the number of time steps in o
simulation run. The number of time steps is both influenc
by requirements of reducing the statistical error and b
wish to capture transient behavior.

The second important parameter is the shear rate of
flow, determined by the Pe´clet number Pe.

3. Initial state

The initial state is created for small volume fractions
random positioning of spheres, avoiding overlap configu
tions. At high volume fractions (w.0.25) this procedure
does not yield an initial solution within reasonable time, a
a different method must be used. A first possibility is
generate an fcc structure. This requires a number of re
ation time steps before the actual sampling is started, du
which the fcc state melts or not. Because it is unknown h
long the melting will take, and also how the completion
the melting should be measured, it is better to use the
lowing method. Starting with a large simulation box and
small volume fraction, the simulation box is gradually d
creased in size until the desired volume fraction is attain
The result is a random initial state. This procedure actu
works in practice because after each decrease in size o
simulation box, the colloidal particles are allowed to mo
with the elastic collision correction method. This alwa
generates a new, nonoverlapping configuration. Because
influence of the initial condition can be considerable
simulations at very high volume fractions in or near equil
rium, we used the second method to obtain an initially r
dom initial state. Nevertheless, in our simulations we mo
tored changes in average values carefully to detect trans
behavior. At almost all volume fractions and shear rates
tially transient behavior was observed.

Summarizing we conclude that the simulation size infl
ences both the finite-size errors and the statistical error in
pair distribution function. The simulation length influenc
both the statistical error and the possibility of detection
time-dependent behavior. Finally, the initial state influen
the time dependent~physical! behavior, but in a way strongly
affected by the simulation size. In practice, some balance
to be found between simulation size and simulation leng

A switch was built into the program to run a two
dimensional version. The two-dimensional version was u
to view a real-time simulation on screen to check the imp
mentation of the periodic boundary conditions and the co
sion algorithm. Another advantage is that the simulations
faster, which is convenient in the development stage of
program. Some useful equations for a two-dimensional s
pension of hard spheres are given in the Appendix. T
be
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simulations were done on the SGI Power Challenge co
puter with R10000 processors at the University of Twent

C. Equilibrium simulations

In Fig. 1~a! we already plotted a pair distribution functio
obtained in an equilibrium simulation at zero shear rate. T
can be compared with known results to check the simula
algorithm. Our simulation reproduces for instance the c
tact values of the pair distribution function as predicted
the Carnahan-Starling equation accurately. The equilibri
phase behavior of hard-sphere systems was already inv
gated with the Schaertl and Sillescu algorithm in Ref.@45#.
Therefore, we will only quote some important results, befo
turning our attention to the nonequilibrium simulations a
the shear viscosity.

In equilibrium the simulations should be equivalent
Monte-Carlo simulations of a hard-sphere gas. The ma
mum close packing fraction of hard spheres iswcp50.74,
while the random close packing volume fraction isw rcp
'0.63. In hard-sphere gas systems a freezing transition
been reported at volume fractionw50.49460.002 by
Hoover and Ree@46#, and a melting transition of the crysta
line hexagonal phase atw50.54560.002. These results wer
confirmed by the computer simulations of Schaertl@45#,
aimed at establishing the phase behavior of colloidal susp
sions for the same model as described in this paper.

These observations provide a setting for the nonequi
rium simulations. In the random fluid state, forw,0.494, the
zero steady shear viscosity exists and can be found from
simulations. In a solid state, by definition an object does
flow and resists small, steady deformations. The zero ste
shear viscosity as we defined it does not exist. In any co
istence region between fluid and solid, part of the system
in a fluid state, and for large systems we expect the poss
ity of flowing. In a finite simulation box, however, a soli
cluster may percolate over the simulation box and crea
frozen state through the periodic boundary condition. The
fore, although a zero steady shear viscosity should exis
the coexistence region, it may be more difficult to find in t
simulations as the volume fraction increases.

The occurrence of the coexistence region is still well b
low the highest volume fractions reported in the measu
ments of the steady shear viscosity of Van der Werff and
Kruif @3#. The experimental zero shear viscosity curve d
plays no strange behavior at the volume fractions of t
coexistence region. An abrupt change in the character
stress, however, has been reported@47# at a volume fraction
w50.5 and was associated with hard-sphere phase beha
The characteristic stress is the stress at the shear rateġc for

which h(ġc)5 1
2 @h(0)1h(`)#.

D. Nonequilibrium simulations

1. Pair distribution function

In nonequilibrium simulations there are no we
established results to which our results can be compared
checked. An important check is to reproduce the exact
shear, low-density perturbation of the pair distribution fun
tion, given by Eq.~2.7!. The low-density solution was veri
fied for both the three- and two-dimensional simulations.
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Fig. 2~a! the result is shown for a steady shear simulation
volume fractionsw50.01 andw50.02, and a dimensionles
shear rate of Pe50.5. The computational work required fo
these plots is considerable. The total simulation time wat
515 000, including a relaxation time oft57000. This cor-
responds to;33108 time steps with 108 particles andd
50.01, taking about ten days on a single CPU of a S
Power Challenge computer with R10000 processors. The
tistical error is still large forr *2, and only in the range
betweenr 51 andr 52 linearity inw is visible. This is more
clear in the double logarithmic plot of2g1(r ) in Fig. 2~b!.
However, in view of the statistical error, and of the develo
ment of the statistical error in time, we are confident that
theoretical low-density limit is approached eventually.

As a first example of the perturbation of the pair distrib
tion function g1(r ) at higher volume fractions, we dete
mined g(r ) at a shear rate Pe50.5 and a volume fraction
w50.45. At this volume fraction the particles are still in
random state. At these high volume fractions,g1(r ) inherits
much of the structure of the equilibrium pair distributio
function g0(r ), although the ratiog1(r )/g0(r ) is not a
simple function. In Fig. 3 we have plotted the functio
g1(r ) andg1(r )/g0(r ). It can be seen that this perturbatio
function, calculated as discussed above, is rather smoot
the sense that statistical fluctuations are sufficiently s
pressed after 105 time steps, corresponding to 5ts . This is
somewhat surprising, because we are only considering s
perturbations from equilibrium. Nevertheless, at lower sh
rates the number of time steps required to sufficiently red
statistical error increases rapidly.

FIG. 2. Perturbation of the pair distribution function in stea
shear flowg1(r ) at a Pe´clet number Pe50.5 and for volume frac-
tions w50.01 ~open circles! andw50.02 ~pluses!, in a simulation
of 108 particles. The total simulation time is 15 000ts . Also, the
low-density solution of Eq.~2.7! is plotted~solid line!. See the text
for a discussion of this plot.~a! Linear plot and~b! double logarith-
mic plot.
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A similar simulation run with the Schaertl and Sillesc
overlap correction method predicted a contact value ofg1
different by 30%. This confirms the expectations stated
Sec. III B that in nonequilibrium simulations the effect of th
overlap correction methods is more pronounced than in e
librium simulations.

2. Shear viscosity

In several steady shear simulations we have determ
the contact value of the perturbation of the pair distributi
function, and calculated the relative shear viscosity with E
~2.4! as a function of the Pe´clet number. The result is show
in a flow curve in Fig. 4, in which the shear viscosity
plotted as a function of shear rate. The contact values of
function g1(r ) were determined up to a statistical error

FIG. 3. Perturbation of the pair distribution function in stea
shear flow, the functionsg1(r ), and the ratiog1(r )/g0(r ), for Pé-
clet number Pe50.5 at a volume fractionw50.45, in a simulation
of 512 particles.

FIG. 4. Steady-state shear viscosity as a function of the Pe´clet
number Pe for various volume fractions, in simulations of 1372
2048 particles. For comparison, two fit curves representing m
surements of Van der Werff and De Kruif@3# are plotted for system
SJ14 atw50.419~dashed line! andw50.538~dash-dotted line!. At
a shear rate of Pe515.0 the viscosity drops sharply at high volum
fractions as the result of a transition to a state of hexagonally
dered strings with the strings in the direction of the flow. See a
the text.
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3%. This error is also plotted, but is hardly discernible. T
actual deviation of the viscosity from the model value
more related to finite-size effects and to transient or tim
dependent behavior of the system. For the results prese
in Fig. 4 we tried to eliminate the latter errors as much
possible by increasing the simulation box as much as nee
and by monitoring transient behavior. If nontransient tim
dependent behavior was observed, the averaging interval
extended to capture an appropriate average value. We
discuss this shortly. For comparison, two fit curves rep
senting measurements of Van der Werff and De Kruif@3# are
plotted in Fig. 4 as dashed and dash-dotted lines. The ex
mental curves plotted correspond to the data for silica p
ticles in cyclohexane~system SJ14! at volume fractions
0.419 and 0.538.

(a) High shear rates and the shear thinning region.The
first observation from Fig. 4 is that in general the results
not correspond to the measurements. This is mainly cau
by the failure of the model to predict the shear viscosity
high Péclet numbers, which is dominated by hydrodynam
interactions. Therefore, in our simulations shear thinning
havior is more pronounced than in the measurements. If
behavior of the viscosity at high shear rates is disregarde
corrected, e.g., as in@5# with an empiricalh` , it is seen that
the location of the shear thinning region is only roughly c
rect.

At a shear rate of Pe515.0 the viscosity drops sharply a
high volume fractions as the result of a transition to a state
hexagonally ordered strings with strings in the direction
the flow. This has been observed by many authors, e
@48,49# and has been the subject of extensive research
some time@5,50,17#. The lower volume fractions displa
similar transitions at higher shear rates. Transitions to st
of long-range ordered strings were also observed at lo
shear rates in smaller simulation boxes. However, such t
sitions could be repressed considerably by increasing
simulation box. This means that the long-range orde
states are at least to some extent an artifact of the fi
simulation size, although they are certainly induced by
shearing motion.

Shear thickening as observed by several authors w
simulation models including hydrodynamic interactio
@17,18# is not seen in our simulations. The shear induc
ordering in strings in the direction of the flow seems a sta
state in our model suspension, and breaking up of string
high Péclet numbers was not observed. Although the sh
thickening was not seen in the experiments of Van der W
and De Kruif, it has been established in more recent exp
ments@15,16#.

Apparently the model without hydrodynamic interactio
lacks essential interaction mechanisms at high Pe´clet num-
bers, and results for this model should be interpreted w
care in this regime. The regime at high rates, however, is
the main goal of this paper for a different reason. Althou
the simulation algorithm is stable up to very high shear ra
if the time step is accordingly decreased, the validity of
superposition of diffusion and velocity field~Sec. III A! is
only rigorous at small shear rates.

(b) Low shear region.In this paper we are particularl
interested in the low shear viscosity, because it is expe
that in the low shear regime, where Brownian motion
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dominant, the suspension model performs best. Due to
computational efficiency of the Brownian dynamics alg
rithm, allowing many particles and many time steps, visco
ties can be ‘‘measured’’ from the simulation at quite lo
Péclet numbers.

On the Newtonian plateau the viscosity is constant a
function of the shear rate and the perturbation amplitudeg1
is linear in the shear rate. In Fig. 4 it is seen that the Ne
tonian plateau has been attained for volume fractions up
w50.54. We have plotted the shear viscosity at the low
shear rate simulated, as a function of volume fraction in F
5. The experimental data on the zero shear viscosity for
four experimental systems of Van der Werff and De Kru
@3# are plotted for comparison. We did not use a fitting pr
cedure as suggested by these authors to obtain a zero
viscosity forw.0.54, because it is nota priori clear that the
shape of the flow curve is preserved across the hard-sp
phase transition region.

Figure 5 shows that, as compared to the experiments,
viscosities obtained from the computer simulations fail
intermediate and low volume fractions. Only at high volum
fractions does the model viscosity rapidly catch up with t
experimental viscosity.

These results suggest that at low volume fractions hyd
dynamic effects give the most important contribution to t
shear viscosity in a real suspension, which can be expe
because thew2 term in the expression for the viscosity
incorrect when compared to thew2 result for the zero shea
viscosity of Batchelor and Green@28,2#,

h

h0
511

5

2
w16.2w2. ~4.5!

FIG. 5. Relative shear viscosity as a function of the volum
fraction w from Brownian dynamics computer simulations in th
limit of zero shear rate~open circles!, in comparison to the mea
surements~1! on four different systems of silica particles in cyclo
hexane by Van der Werff and De Kruif@3#. Note that forw.0.54
the value is not the plateau value.
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Moreover, because the model viscosity is even larger t
the experimental viscosity forw.0.54, the results sugges
that at high volume fractions the hydrodynamic interactio
prevent the hard-sphere interactions from becoming
dominant. However, this is somewhat less conclusive,
cause the errors in the measurements of volume fraction
deviations from monodispersity both have large effects
the viscosity at volume fractions close to the close pack
volume fractionw rcp'0.63.

Also in the low shear region phase transitions are resp
sible for transient behavior. For volume fractions beyond
start of the phase coexistence regionw.0.494 transitions to
states of partially crystalline structure were observed. In c
trast to the high shear transitions described above, the sy
does not evolve towards a~meta!stable steady state of hex
agonally layered strings at small shear rates, but rather
collection of regions of hexagonal packing. In Fig. 6 t
history of the relative shear viscosity is plotted forw50.58
and Pe50.0015. After being in a random, fluidlike state fo
about 40ts , the system tranfigures rather sharply into a st
with ordered regions. A typical example of these regions
shown in Fig. 7.

A single viscosity can be ascribed to such systems on
the averaging time interval is long enough, because the fl
tuations in Fig. 6 occur on a much longer time scale than
fluctuations in the purely random state. Correct treatmen
these states requires either a strong increase in simula
length or in simulation size. Moreover, because ordered

FIG. 6. Relative shear viscosity as a function of dimensionl
time at a Pe´clet number Pe50.0015 and a volume fractionw
50.58, in a simulation of 2048 particles. After 40ts (83105) the
system transfigures from a mostly random state towards a state
regions of local order. No ‘‘final’’ state is corroborated for th
duration of this simulation.
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gions are easily of the same size as the simulation box
additional, lower limit on the simulation size is set by th
demand to capture these regions entirely. As an example
feel that this requirement has been~scarcely! met in Fig. 7 in
a simulation of 2048 particles. Domainlike states can be
pected in the coexistence region, but in a similar simulat
at zero shear rate, a transition occurred at a later time~80ts).
Also, the simulation box displayed almost global order.
small shearing motion apparently accelerates structural re
ation, and decreases the average domain size.

It will be interesting to study the relations between t
fluctuations in the shear viscosity, the sizes and shapes o
ordered regions, and the shear rate. This is subject of cur
research. It is in this field that the present suspension mo
may be a powerful tool, even though the results in this pa
demonstrate the inadequacy of the hard-sphere suspen
model without hydrodynamic interactions to describe t
high shear regime of real suspensions.

V. CONCLUSIONS

In this paper we have discussed a model of hard-sph
suspensions in which hydrodynamic interactions are
glected, but single-particle hydrodynamics and hard-sph
interactions are retained. The aim was to treat this mo
consistently, and with no additional approximations, to
tablish its merits in describing the rheology of real susp
sions.

After discussing an expression for the shear viscosity,
described a simulation algorithm that is both accurate
efficient to simulate the model suspension. This simulat
algorithm is consistent with the expression for the viscos
In addition, the algorithm was compared with two altern
tive, similar algorithms, and was shown to be better sui
for the purpose of determining the excluded volume effe
in a suspension dominated by Brownian motion. In equil
rium simulations the algorithm is able to reproduce the ha
sphere pair distribution function accurately, and in noneq
librium simulations the exact low-shear, low-density limit
the perturbation of the pair distribution function could b
computed.

The algorithm was used to study the steady shear vis
ity. The validity of the model of the hard-sphere suspens

s

ith
FIG. 7. Typical snapshot of the simulation box of a simulation of 2048 particles at a Pe´clet number Pe50.0015 for projection on the three
Cartesian planes. The flow is in theX direction and the velocity gradient is in theY direction. The volume fraction isw50.58. For
transparency, the particles are not drawn at their actual size. This snapshot was taken att'200; see also Fig. 6.
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was tested through comparison with the experimental w
of Van der Werff and De Kruif. In general, it is conclude
that the results of the hard-sphere model without hydro
namic interactions is disappointing.

In the nonequilibrium simulations we found that in th
intermediate and high shear regimes the model heavily
derestimates the shear viscosity of real suspensions.
shear thinning region is found only roughly at the corre
position. We have found shear induced ordering in string
high shear rates as usual, but have not encountered s
thickening. It is concluded that hydrodynamic interactio
indeed are non-negligible in these regimes at all volume fr
tions.

In the low shear limit we found that the zero shear v
cosity is underestimated at low and moderate densities
compared to measurements of a real suspension, but the
cosity is overestimated as compared to the experimental
ues at high densities in the phase transition regime. The
a possibility that the experimental systems fail at extrem
high volume fractions, as they do not consist of truly ha
monodisperse spheres, and that the measured shear vis
is inaccurate. A more likely explanation is that the hydrod
namic interactions help the colloidal particle to find an eas
way through the sample. This would be, again, a fundam
tal hydrodynamic property of the suspension.

A problem when determining the zero shear viscosity
that at high volume fractions the Newtonian plateau is
creasingly difficult to find. The simulation times increa
rapidly with decreasing shear rate in order to overcome
tistical noise. Furthermore, the simulation box must be c
sen large to avoid finite size errors in the phase transi
regime. It was found that at high volume fractions the beh
ior is complex, with a strong interplay of box size, shear ra
and spontaneous or shear induced phase transitions. Th
istence of a zero steady shear viscosity has been establ
in our simulations for volume fractionsw up to 0.54.

The complete phase behavior of the hard-sphere syste
the region forw.0.494, in relation to the shear rate and t
simulation box size, requires more attention than is poss
in this paper. This is a subject of current research. M
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simulations, with even more particles and perhaps e
smaller shear rates, may be required to explore this are
the shear viscosity satisfactorily. In this field computatio
ally efficient models such as the one used in this paper m
still provide valuable results that are relevant for real susp
sions, although quantitatively correct results should not
expected.

APPENDIX: TWO-DIMENSIONAL SUSPENSIONS

In two dimensions the volume fraction isw5 1
4 ps2N/V

for a system of hard disks of diameters. The hexagonal
close packing volume fraction isw rcp5p/2A350.907.

In a two-dimensional system @r5(x,y) and r
5Ax21y2], the Smoluchowski equation for the low-densi
pair distribution function is Eq.~2.5!. In a weak flow expan-
sion, the pair distribution function will have the form

c~r !5c0~r !12 Pe cosf sinf c1~r !. ~A1!

The two-particle Smoluchowski equation simplifies to

c191
1

r
c182

4

r 2
c150 ~A2!

andc18(1)51. The solution of this equation is

c1~r !52
1

2r 2
, ~A3!

which predicts a nonequilibrium low shear, low-density co
tact value of2 1

2 . In three dimensions this was2 1
3 . The

equations corresponding to the three-dimensional equat
~4.1! and ~4.4! are

dNr5nc0~r !2pr 2dr ~A4!

and

dN̄r5
1

4
pnc1~r !rdr . ~A5!
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