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Brownian dynamics simulation of a hard-sphere suspension
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In this paper we discuss the nonequilibrium shear viscosity of a suspension of hard spheres that is modeled
by neglecting hydrodynamic interactions in a consistent way. The aim is to establish the true capabilities of this
model in predicting the properties of real suspensions. A Brownian dynamics algorithm is used to simulate the
movements of hard spheres immersed in a Newtonian solvent in a nonequilibrium steady shear flow. A new
development is the treatment of the overlap of spheres as elastic collisions, to simulate the no-flux boundary
condition on the surfaces of rigid particles. This algorithm is compared with other algorithms suggested in the
literature, and is shown to be simple and accurate even for two spheres at close distance. This provides an
algorithm that is very suitable for calculating the pair distribution function and especially its hard-sphere
contact value, both in equilibrium and nonequilibrium simulations. The algorithm is used to study the non-
equilibrium stationary shear flow in the low shear limit. The simulations correctly reproduce the exact low-
density limit of the perturbation of the pair distribution function. The perturbation of the pair distribution
function in shear flow can be extracted from the simulation data and used to compute the stationary shear
viscosity for a system of diffusing hard spheres without hydrodynamic interactions. This yields a flow curve for
this model system including the low shear limit. It is found that the model shear viscosity fails at intermediate
and high shear rates as can be expected from the neglect of hydrodynamic interactions, but also in the low
shear limit at small and moderate volume fractidi&1063-651X99)14002-9

PACS numbegps): 05.70.Fh, 61.20.Ja, 51.26d

[. INTRODUCTION sions is that the hydrodynamic interactions of the colloidal
particles are not pairwise additive as is the case in classical
Systems of hard spheres have always been the subject tifeories of molecular fluids. In suspensions, a change in po-
extensive research. In statistical physics the hard-sphere sysition or velocity of a suspended particle instantaneously in-
tem is studied because it is one of the simplest systems thfitiences the entire flow field and the velocities of all other
retains many of the complexities of many-particle systemsparticles. One approach is to use series expansions in the
The hard spheres are studied in the context of classical staarticle number density to obtain results at higher densities,
tistical physics, quantum or relativistic many-body theory, orbut this has not been a successful approach, because the
the theory of phase transitions. In rheology the hard-sphereomputations become extremely cumbersome even at mod-
system often is studied as a first approximation to the properate volume fractions. A different approach is to restore the
erties of colloidal suspensions. Real suspensions are deennection with classical statistical physics, and to model the
scribed with respect to their deviations from hard-sphere besuspension by neglecting the hydrodynamic interactions, but
havior. at the same time, to take into account the pairwise hard-
In rheology the model hard-sphere system consists of hargphere interactions rigorously. The basic idea of this ap-
spheres of equal size dispersed in a Newtonian solvent witproach is that at high densities the hard-sphere interactions
viscosity 7. The size of the colloidal particles is assumed tomay become dominant, and that the properties of the suspen-
be small enough such that inertial and gravitational effectsion are determined largely by the hard-sphere packing struc-
are negligible, and the velocity of the flow is such that thetures. This idea has been conjectured by several authors
Reynolds number is low and turbulence is absent. This sy§5—9], and has been applied, in various forms, fairly success-
tem was theoretically studied through the pioneering work ofully in the low shear regime.
Batchelor{1,2], while important measurements were done by  If hydrodynamic interactions are neglected, an exact ex-
Van der Werff and De Kruif(3], with viscosity measure- pression for the shear viscosity of a hard-sphere suspension
ments dispersions of silica spheres in cyclohexane at variousan be given in terms of the nonequilibrium pair distribution
particle sizes and concentrations, and Ackerson and Pusdynction [10—12,9. This will be discussed in Sec. Il. The
[4], who studied the nonequilibrium structure of suspensionsnain theoretical challenge then reduces to computing the
in shear flow. In theoretical work this model system is rig- pair distribution function in shear flow. In this paper we will
orously described by th&l-particle hard-sphere diffusion take the route of computing the nonequilibrium pair distribu-
equation, which includes the diffusion and hydrodynamic in-tion function from Brownian dynamics simulations that are
teractions of hard spheres, and possibly an external flokquivalent to the basic hard-sphere suspension model. In this
field. Proper understanding of the hard-sphere suspension vgay it is possible to rate the modeling of a hard-sphere col-
indispensable if a comparison with a real-life suspension isoidal suspension as a collection of diffusing hard spheres,
to yield additional information, which explains the continu- without blurring the comparison with series expansion trun-
ous theoretical work on hard-sphere suspensions. cations or equation three body closufés,14].
The main difficulty with the statistical theory of suspen-  Inrecent years there seems to be a growing unanimity that
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suspension models without hydrodynamic interactions can- The macroscopic shear viscosity for this model suspen-
not yield correct results. An important reason is that sheasion can be defined as the ratio of the components of the
thickening behavior has been found in experim¢hf16 at  stress tensor and the shear rate. Well-known expressions for
high shear rates, and in simulations of suspensions with hythe stress tensor in colloidal suspensions of spherical par-
drodynamic interaction§17,18. This shear thickening be- ticles are given by Batcheld®2,1] and Brady[11]. In Refs.
havior seems to be rooted in hydrodynamics, because it hd42] and[21] the relations between the different contribu-
not been found in simulations of models lacking hydrody-tions in the stress tensor expressions of Batchelor and Brady
namic interactions so far, and because a possible hydrodyvere demonstrated.
namic mechanism for shear thickening at high shear rates In our model suspension of identical hard spheres, the
was conjectured if19]. solvent gives a contributiomy, to the viscosity. If inertial

However, before the model suspension without hydrody-effects are neglected, there are no kinetic contributions to the
namic interactions is discarded as a model for real susperstress tensor and therefore to the viscosity. Also, if hydrody-
sions, it should be tested thoroughly. The aim of this papemamic interactions are omitted, single-particle hydrodynam-
and a previous paper on the stress tef&dt, is to treat the ics remains and the stresslet contribution takes on its single-
model suspension without hydrodynamic interactions in guarticle form at all densities and shear rates. This gives the
completely consistent way without additional approxima-Einstein contribution to the viscosif{22,23 according to a
tions or corrections. In our opinion only such a procedurecalculation as in Landau and Lifshif24]. The remaining
may establish definitely whether or not the model falls shorpart of the stress tensor can be considered either as an inter-
in describing real suspensions. action or “Brownian” contribution, as discussed [ith2].

The new aspects in this paper are the following. First, in  So, defining the shear viscosity as the ratio of thexy

the pair distribution function is given and shown to be validfor this model suspension the following expression for the
at all shear rates. Because the expression for the shear Visady-state shear viscosity

cosity requires the calculation of the nonequilibrium pair dis-
tribution function, we will develop a new method to deal

2
with hard-sphere overlaps in Brownian dynamics simulations 7= 1o+ §<P77 _ l kgTn f ﬁlé(r —o)g(r)dr
in Sec. Ill. This method is discussed and compared to two 0r27" 2 r '
other simulation algorithms, and it is concluded that the new (2.2

algorithm is the most appropriate algorithm. In Sec. IV we

discuss the application of the formalism to nonequilibriumy, this expression, which is similar to expressions of, e.g.,
shear flow simulations, especially in the low shear regimegaqy [11] and De Scheppdil0], n is the overall particle
The shear viscosities obtained from the simulations are coms,mper density and)(r) is the pair distribution function.

pared with experimental work on real suspensions. The hard-sphere diameterwill be used as the length scale
in this paper, so we set=1. The pair distribution function
Il. STEADY-STATE SHEAR VISCOSITY is a well-known reduced forni25] of the N-particle distri-

bution functionPN in Eq. (2.1). The § function in the inte-
rand reflects the nondifferentiable character of the interpar-
icle potential. It is emphasized that this expression is exact
or this model of a suspension of hard spheres, because all
ossible contributions to the stress tensor are considered. It is
ossible to maintaif5] that in Eq.(2.2) the hydrodynamic
contribution 7o+ 3 7, May be replaced byy.,, the viscos-
ity at infinite steady shear rat@.g., as obtained from the
Krieger-Dougherty formuld26]), thus improving the mod-
el's results in certain regimes. This however, it is not consis-
tent with the model of single-particle hydrodynamics, and
beclouds the rating of the present model without hydrody-
namic interactions as a model for real suspensions.
The task remaining is to calculate the nonequilibrium pair
(2.1 distribution functiong(r). This task is complicated because
in shear flowg(r) is both a function of the number density
In this equation we have introduced theparticle distribu-  and the shear rate: the normal equilibrium pair distribution
tion functionPN(r,- - -ry;t), the Stokes’ friction coefficient (as obtained, e.g., from the Percus-Yevick equatgives no
{0, andDy, the “free” diffusion coefficient of a single par- contribution to the viscosity due to its spherical symmetry. A
ticle in the solvent given by ,=kgT/{, (kg is the Boltz- theoretical approach is to derive an equationdér) from
mann constantT is the temperatude u; is the (local) flow Eqg. (2.1). The resulting equation, however, involves un-
velocity at the position of particle, andF; is the total force  known higher order distribution functions, requiring equation
on particlei. From a macroscopic point of view, i.e., when closureq13,9]. In this paper we will take a different path by
the colloidal particles are considered to be microscopic, thisising computer simulations to compugér). But first we
evolution equation has a role similar to the role of the Liou-will discuss some general properties of the pair distribution
ville equation in statistical mechanics. function in the case of shear flow.

In this paper we aim at calculating the relative zero shea
viscosity for a hard-sphere suspension which is modeled b;
neglecting the hydrodynamic interactions in a consisten
way. Although hydrodynamic interactions are neglected, th
solvent still plays an important role, because it corroborate
the diffusion of the particles and supplies friction that drag
the colloidal particles along with the flow. This is sometimes
called the free-draining model of suspensipff The time
evolution for this model is described by the-particle
Smoluchowski equatiof20]

N
d d 0 F;
—_ pN(ty= — . |y.pN_ . N+_' N
PN ;ari u,P DogriP gOP
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A. Low shear limit: Perturbation expansion of g

* _
In the limit of low shear rates, it can be sho\2v] that j Yirm Yimd Q= 0171 Omrm, (2.9

the pair distribution function, being a function only ofthe _ ] )
volume fractione and the shear rat@f which a dimension- ({2 denoting the angular variablesand satisfy Y,

. : —(—1\My* ; : :
less measure is the &et number Pe }ya?/D,, see also (=2)"ir, . With the identity

Sec. Il A), up to first order must have the form
Xy ) . 1 27
—, =C0S¢ S|n¢>sm20:i— 15(Yoo~ Yo o)

Xy
g(r)=go(r)+2Per—Zgl(r)+O(Pe2), (2.3

: : : o \/ (Y 2= Y% (2.10
with r=|r|, and assuming a regular series expansiog iof
the shear rate.
Only the perturbation ofj(r) gives a nonzero contribu-
tion to the shear viscosity. Performing the angular integra-
tions in Eq.(2.2) we find for the relative zero shear viscosity

and the orthogonality, we can rewrite the angular integral in
Eq. (2.2,

Xy

” — 9(r)dQ

—=1+3¢0—F%g:(1). (2.9

70
In this expressio,(1) is the contact value of the first-order - f iV 1_5(Y§,—2
perturbation of the pair distribution function. In order to re-
produce the experimental results we necessarily need a nega-
tive contact value fog,(1) with an increasing magnitude for X |=Eo m; Gim(r)Yim(6,¢)dQ
increasing volume fractions. The zero number density limit
of g,(1) was calculated by Batchel¢28] from the two- 1 27
particle Smoluchowski equation. An equation for the low- =7 Ef (Y22 Y3)[ G2 2Y2 21 G2oY25]dQ
density pair distribution functiog(r) can be obtained from
Eqg. (2.1) by usingu(r) = yye,, integrating over all particle 1 27
coordinates but two, and discarding all terms of higher order ~ 7 Ef (Yz*Z_Y%)[%(GZ*ZJFGZZ)(YZY*ZJFYZZ)
in the number density. This yields the equation

_ 3(Gp—2—G20) (Y2~ Y22)1d0)
V-(vyeg—2DoVg)=0, (2.9
| . . =iV ] v

with the boundary conditiom-[2D,Vg—yyeg]=0 forr

=1. In a weak flow expansion, the pair distribution function 1
will have the form of Eq.(2.3). With this ansatz, the two- X[3(Ga-2—=G2) (Yo, 2— Y22)]dQ. (2.1

article Smoluchowski equation simplifies to . . L . .
P g P The last line shows that the viscosity in our model, i.e., if

2 6 hydrodynamic interactions are neglected, is only dependent
gi+-g;— —01=0, (2.6) on ther, Pe-dependent amplitude of the part of the pair dis-
r r tribution function that has the functional fori¥i, ,— Y, _»

~cos¢sin¢sirfd. This combination was assumed in the

andg;(1)=1. The solution of this equation is low shear expansion in E¢2.3), but we have now shown
that the calculation for the shear viscosity through a specific
gy(r)=— i 2.7) component of the nonequilibrium pair distribution function is
! 33’ ' valid for all shear rates.

In the remainder of this paper we will defing;
which predicts a nonequilibrium low shear, low-density con-=g,(r,Pe) as the amplitude function of the functional form
tact value of— 3. This result provides an important check on cosé¢ sin ¢ sin?é, without reference to the low shear expan-
the nonequilibrium simulations. sion. As a result we can write the relative shear viscosity in

the simple form

7(P® 5 18 ,gi(1,Pg
o It Ee T pe (212

B. High shear rates: Expansion in spherical harmonics

A more general approach to E@.2) is the following. At
all shear rategg(r) can be expanded in spherical harmonics

[29] as valid for this suspension model at all shear rates.

® |
g(r) =Z Z Gim(NYm(6, ). (2.8 Il. SIMULATION ALGORITHM

In computer simulations of many particle systems, the
The (complex Y,,(¢,8) are orthogonal on a sphere movements of the individual particles are followed in time.



2178 P. STRATING PRE 59

In molecular dynamics the Newton equations of motion aredisplacements that are carried out in Monte Carlo simula-
integrated in time, as is appropriate for gases and atomitions, are not just invented to sample the configuration space,
liguids. Well known are the simulations of the hard-spherebut simulate the actual diffusion of particles in time. Another
gas by Alder and WainwrigH30]. When applied to suspen- difference is that an acceptance criterion is missing in our
sions, both colloidal particles and solvent particles have to b&imulation, as we will see later. The simulations described
simulated, leading to unacceptably long computation timesshow close resemblance to the work described by Heyes in a
Recently, interesting results for suspensions have been réeries of papergb,36,37, but in these papers the viscosity is
ported by Koelman and Hoogerbrug@@l] using solvent computed from the simulations in a different way.

particles with simplified dynamics. In Brownian dynamics FOF hard-sphere gases, molecular dynamics simulations

the Langevin equation is simulated, which describes colloj&'€ NuMerous. !n_ hard spher_e gases the trajectories including
uccessive collisions of particles can be calculated exactly.

dal particles that are subject to small random forces, whicj d B ian d . lecular d
model the interaction with the solvent. Thus the solvent i\ @dvantage of Brownian dynamics over molecular dynam-

ics is that the simulatiorfand theoretical problem of the

grees of freedom enormously. If the solvent friction is highheat'ng up of the system in no.n.equmbrlum S|mglat|ons QOes
not occur, because the velocities of the colloidal particles

and the velocities of thécolloidal) particles are strongly o ; L ;
damped, one can simplify the dynamics further, assumin%ave been eliminated by assuming equilibrium in the mo-

instantaneous equilibrium in momentum space and conside nentum var?ablﬁs. A.d|sadv£a)n.tage of thefedllmllnatlon_ ﬁf \r/]e'
ing only the differential equations for the positions. The mo-\0Clties IS that there is no obvious way of dealing with the
tion of a particle is then described with a Langevin-typehard sphere.mteractlon.s anymore. To §v0|d this problem,
equation in which a random displacement term generates tHgost Brownla_n dynaml_cs S|n_1ulat|on€smth_out hydrody-
diffusion process. This Brownian dynamics simulation algo-nam'c interactionsuse _d|fferent|able potentials, such as the
rithm originates from the work of Ermak and McCammon Lenna(d-Jones. potent|@B$—4q. AIthough_ the cal_culat|on
[32]. If hydrodynamic interactions are included through themc .the |_nterpart|_cle fofces IS time consuming, the implemen-
Oseen tensor. the simulation is referred to as a Stokesi tion in the simulation algorithm is straightforward. The

dynamics simulation, mainly developed by Bossis and Brad ard-sphere suspension without hydrodynamic interaction

[33], and applied to monolayers of spheres. Only recentlyV2S recently considered by Cichocki and Hingéd] and

this method was applied to three-dimensional colloidal sus-SChT]ertl an_ﬁl Sillg_scEAZ]. '(I;heri]r (elquiligrium) simulation al- d
ensions in the work of Phurfg.7]. A completely different ~ 9°Mthms will be discussed shortly. These programs were de-
P g7l pletely veloped to establish self-diffusion coefficients and phase

approach is to solve the Stokes flow completely with a - ) ;
boundary integral equation method, as in the work of Toosdransitions. In this paper we will see that the treatment of

[34]. However, inclusion of Brownian motiofin the sense part_i(_:le_overlaps in_these programs s inappropriate; for non-
of thermal movemetwithin this framework is not straight- Sduilibrium simulations of diffusing hard spheres in shear
forward, and the simulations are extremely costly regardind/oW- and we will present an elegant alternative.
computation time when many particles are involved, espe-
cially in three spatial dimensions. A. Diffusion

As mentioned earlier in the Introduction, we are interested
in the properties of the system described by Mparticle
Smoluchowski equatiof®.1) without hydrodynamic interac-
tions. This equation described freely diffusing particles
within a volumeV. The diffusion of a particle is only limited . 1 3
by the boundaries as set by the otiér 1 particles. The number density as s wo™n. _
N-particle Smoluchowski equation is a Fokker-Planck equa- D'ff‘.’S'O” is simulated by small ra_ndpm dlspla_cements at
tion for the distribution function of the stochastic position each time step, based on a Langevin-like equation,

eliminated from the simulation, reducing the number of de-

The method of Brownian dynamics is widespread and we
will only discuss the basic equations. In a finite bdxpar-
ticles with diametefo are followed in time. First important
parameter is the volume fractiop related to the particle

variables. It has been known for some time that for every _ =
Fokker-Planck equation there is a corresponding stochastic ri=u(r;)+—+Ar(t), (3.1
differential equation(Langevin equationwith appropriate {o

stochastic properties, such that the generated distribution

functions are equivalent to the solutions of the Fokker-whereu is the local solvent velocity], is the Stokes friction

Planck equatioi35]. The task is to find the Langevin-type coefficient (related to the solvent viscosityy, as (o

equation that is equivalent to thé-particle Smoluchowski =3wmny0), F; the force on the particle due to other particles

equation. The pair distribution function may be extractedor an external field, andr;(t) are small random displace-

from such a simulation, rather than calculated analyticallyments with zero mean. Space is scaled with the particle di-

The advantage of the simulation is that the results are in ametero, and we introduce as unit of time the structural

sense exact for the modglpart from numerical or statistical relaxation time

error, or finite simulation size effegtavhile analytical meth-

ods involve approximations such as truncations of infinite o2

series, or introduction of equation closures. To=p
The Brownian dynamics method described below shows 0

much resemblance with a Monte Carlo simulation to deter-

mine the configurational partition functidi25]. In this pa-  which sets the diffusion time scale. The dimensionless time

per, however, it is @ynamicsimulation, because the random is defined as=t/7,, .

(3.2
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After time A 7 the probability for a stefhr is a Gaussian a rare situation, it was found in practice that problems with
distribution function with root mean square§ the time marching scheme occurred even at moderate num-
=\2D,At/ %= \2A 7 [35]: ber densities.

1 1 5 " 2. Schaertl and Sillescu method
P(Ar)= ————-ex —=[(AX“/2A 7)+(Ay“I2A 7) ] . . .
(4mAT) 2 In the Schaertl and Sillescu simulations all particles are

displaced simultaneously. The displacements are always of
+(A22/2Aq-)]), (3.3 the same magr_nitude and the direction is onIy_ one of six
Cartesian directions. After a number of steps this procedure
has diffusion statistics. If an overlap has occurred between

in accordance with the Einstein relation two particles, these two particles are separated to contact in
) ) the direction of their relative vectdthis algorithm was also
|Ar|*=6DoAt=60°AT. (34  proposed in5]). A second correction must be done if par-

L ) ticles still overlap after the first correction step, either be-

The diffusion is superposed on a shear flow with sheaggse there was a three particle overlap in the first place, or
rate y. In dimensionless units because a secondary overlap was generated by the correc-
tion. Such secondary overlaps occur easily, especially at high

~ ~ o - To ~ volume fractions. Schaertl and Sillescu ignore secondary

u(ri) =u(r)-== yyig - =4 Peyie, (35 ,verlap, because its correction is time consuming, and they

are mainly interested in a very fast algorithm. Large errors

with e, the unit vector in thex direction. The dimensionless are made at high volume fractions and at long simulation

Peclet number Pe in this paper is defined as times, that must be corrected through the introduction of ef-
fective volume fractions.
1 '),02 We feel that allowing overlaps is not the way to deal with
Pe= 2 D—O, (3.6 the subtleties of hard-sphere systems in an age of unrivaled

computing power, and we modify the Schaertl and Sillescu

and measures the relative motion of two particles due téalgonthm the following way. First, the displacements are

. : . . _sampled from a Gaussian to simulate diffusion statistics from
shear flow as compared to relative motion due to diffusion

The factor; is added to conform to the usual definition Pe thg start. Second, .secondary ov_erlap_s are freated S|m_|larly as
primary overlaps, i.e., the algorithm is repeated. Obviously,

— a2 —1 i H . . .

=72°/D, (a=;ois the particle radius __ the algorithm is slowed down by these adjustments. How-
To reduce the effects of the finite simulation size, periodiCayer we find that the number of repetitions of the overlap

boundary conditions are applied: the particles are supplésgrrecting loops is typically between 1 and 4 at volume frac-

mented with periodic images in all spatial directions. In thegjong up to 0.55, provided the displacement step is not cho-

case of shear flow we use the Lees-Edwards constructiogen oo large. Moreover, it is found that a nonoverlapping

[43]. This means that the image boxes move with the sheagiate is always corroborated, and there is no need to intro-

flow according to their positions. duce effective volume fractions to correct the results. In this
paper we will refer to this modified Schaertl and Sillescu
B. Particle overlaps or collisions algorithm still as the Schaertl and Sillescu algorithm.
In one time step all particles are moved at the same time
with a random displacemeigand in nonequilibrium simula- 3. Elastic collision method
tions a displacement due to shear flowfter the displace- In this paragraph we discuss a novel method based on the

ment particles may overlap, and the displacements of thesgiowing observation. The random displacement of a colloi-
particles somehow havg to bg adjuste_d. We discuss thregy) particle away from any boundary is sampled from a
approaches, one by Cichocki and Hinsp#l], one by  Gayssian as discussed above. Close to a restricting wall,
Schaertl and Sillesc{42], and a new approach. however, the random displacement should be sampled from a
distribution function that is the solution of the Smoluchowski
equation near a boundary, i.e., with a no-flux boundary con-

In the Cichocki and Hinsen simulation in each step onlydition, instead of a “free” Gaussian. Therefore we need a
one particle is(Gaussiah displaced in timeA7/N. If an  method that generates the no-flux boundary condition. In our
overlap occurs, the particle is restored to its previous posisimulation we use elastic binary collisions to adjust the po-
tion, which is exactly the procedure of Monte Carlo simula-sitions after an overlap detection, because the no-flux bound-
tions. In nonequilibrium simulations, for which displacementary condition eventually is the result of elastic collisions. As
due to shear flow may occur, this algorithm poses someach particle has moved by an amodmt in a time stepA 7
problems. This can be seen as follows. Suppose all Browniait can be ascribed a “velocity’v;=Ar; /A 7. The procedure
particles in row in one time step perform an illegal, overlapis now straightforward to calculate the corrected displace-
move, and are kept at their original position. After one timements with two-patrticle collision dynamics. The elastic col-
step, all particles are at the same position, but the imagksion laws prescribe conservation of energy, momentum,
boxes have moved. This may cause overlap with image paand angular momentum, the combination of which yields the
ticles even with fixed particle positions. Although this seemsbinary collision laws

1. Cichocki and Hinsen method
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VI =Vy+ (T3 Var)T oy, (3.7

T
+ Elastic collision method

X Schaertl & Sillescu method
o} Cichocki & Hinsen method

V3 =Vo— (T2 Vo)) T 1. (3.8

These relations describe the instantaneous velocity of twc
particles just after collision in terms of precollision quanti-

ties. The vectorAz1 is the unit relative position vector at the
moment of collision and,, the relative velocity before the
collision. Implementation of these collision laws in a Brown- st
ian dynamics algorithm will conserve the center of mass dis-
placement and rotational displacement, which may be very s
important in the case of shear flow, where a net displacemen
or rotation is very probable. Moreover, this algorithm is con- 1+
sistent with the derivation of the Brownian contribution to

sk

g,tn)
wET®

90

the stress tensor in EQ.2). Oz e s 18 2 22 24 25 28 3
There are two methods to implement the elastic collision (2) r

method. One method is to disregard any order in the occur- : : : : : : : ,

rence of collisions in one time step. With this implementa- +  Elastic collision method

tion all particles are displaced simultaneously, after which s, e i ey

overlapping pairs are simply sought and corrected in the or- **[ ®s,
der of detection. This yields a simple and efficient algorithm.
A second method is to take into account the order of colli- .| iR

sions more or less rigorously. In that case all collision times x )

for overlapping pairs have to be computed and ordered. A_ xx <, o,
disadvantage is that after the first collision/overlap correction &*°| e, 00 i
the list of collision times has to be recomputed. In spite of its *x
disadvantages it was necessary to implement the secon ;| X x
method rigorously, because it was found that only the rigor- Tk, Coe
ous method produced the correct close contact statistics, a O,
described in the next section. 281 Xy, D09

4. Equilibrium comparison of the algorithms > s s ) s . : . . .
1 1.01 1.02 1.08 1.04 1.05 1.06 1.07 1.08 1.09 1.1

In Fig. 1(a) we plotted the equilibrium pair distribution () "
func_tlon In s!mulatlons with the _three different overlap o mie. 1. Comparison of the equilibrium pair distribution function
rection algorithms, with 512 particles at a volume fraction of ) computer simulations with three different particle overlap cor-
¢=0.45, and a mean squared step5of0.010. If we com-  reciion algorithms. The simulation size is 512 particles at a volume
pare the results of these three algorithms, it is seen that theyction of o=0.45.(a) Global view and(b) closeup in the contact
Schaertl and Sillescu algorithm strongly increases the possizajye region. Note the high contact val(eetween 7 and)gof the
bility to find two particles at contact, resulting from putting Schaertl-Sillescu method i).
pairs at contact after each overlap. This increased contact
value decreases the possibility to find pairs at different relaCichocki and Hinsefi41] cannot be extended to nonequilib-
tive distances. The Cichocki and Hinsen method and theium simulation without an additional overlap correction
elastic collision method produce the same pair distributiormethod, while the algorithm of Schaertl and Sille$éd] is
function. The difference can be seen better from a closeup dhferior in the region of interest, knowing that even at mod-
the contact region, shown in Fig(l. While from Fig. Xa)  erate volume fractions the pair distribution function varies
the difference seems small, it is now observed that for theapidly in the region close to contact. Moreover, it can be
Schaertl and Sillescu method, even disregarding the contaeixpected that deficiencies in the overlap correction method
value point which has an absurd value, an estimation of theiill have a larger effect on the results in nonequilibrium
contact value based on the remaining points will be off bysimulations, because in nonequilibrium simulations the aver-
almost 10%. It is noted that only the rigorous elastic collisionage net rotation or displacement of a pair of particles is non-
method produces the same close contact statistics as thero.
Cichocki and Hinsen method. Every different collision  With respect to the speed or computational efficiency of
mechanism, or order change of collisions, influences more ahe algorithm we can say the following. First we find that all
less the shape of pair distribution function in the contactalgorithms are comparable in speed. Most important limita-
region. This has been checked with varidasroneouscol-  tion of the simulations is that the number of pairs is quadratic
lision mechanisms and collision orders. in the number of particles. This, however, can be largely

Because of the importance of the hard sphere contagesolved by keeping track of neighboring particles in
value in the second part of this paper, we conclude that theneighbor lists” in the familiar way[44]. If the rigorous
rigorous elastic collision algorithm is the most appropriateelastic collision is implemented with neighbor lists and lists
algorithm for our purposes. The algorithm proposed byof collision times that are updated carefully, a very fast simu-
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lation code resultg that is easily capable of sim_ulating several dN, = & 7ng,(r)radr. (4.4)
thousands of particles on a modern work station.

Summarizing we say that the rigorous elastic colllslonFoIIOWing this procedure in the simulation,(r) can be

alggrlthm seems most' appropriate for our PUrPOSES I COMyqiarmined. The result can be used in the equation for shear
parison with the algorithms proposed by Cichocki and Hin-

. X s viscosity Eq.(2.2). In fact the above procedure is a direct
s e o hafYlualion of the angulr teatons 1 64,2
To overcome statistical noise in the pair distribution func-

hard spheres possible. No overlaps ever occur, even at h'%n)n, one has to average over all particles in the box and over

dsiﬂzlgﬁtlsé\r\gvdhlgnlelzci S:{S'%uso\f)éﬁgle_rrgIgj[etgeinﬁmgl?;gns dooa number of time steps. The number of time steps needed to
. DT IO p-T . PS AQ0quce thdrelative statistical error in the perturbation of the
not occur in the simulations. Only with the elastic collision

- . . pair distribution function rapidly increases with decreasing

method are collisions taken into account accurately with con! . . .
. . ; ; shear rate, because the amplitugdér) is proportional to the

servation of net displacement and rotation, which may be

oo Sk . : Shear rate.

crucial in nonequilibrium simulations. As compared to hard-

sphere gas simulations, the only deficiency is that particles _ _ _

may pass parallel without sensing each other. For small time B. Simulation details

steps however, this is a rare event. 1. Simulation box size

Simulations were done in a cubic box of lendtiwith N
particles. For the majority of the simulations the number
A. Calculation of the pair distribution function was chosen asm® wherem is an integer number, because
from finite box simulations there are four particles in the fcc unit cell in three dimen-
sions. These particle numbers are compatible with an fcc
structure. In a finite system different particle numbers may
prohibit the formation of a long-range fcc structure. Effects
of the choice particle number can expected to be significant
at volume fractions where phase transitions play an impor-

IV. COMPUTER SIMULATIONS

The pair distribution function can be found as follows
[44]. The number of particles found in a volunde at dis-
tancer from a specified particle ing(r)dr. The number of
particles in a spherical shell of widthr is

dN,=ng(r)4mr2dr. 4.2 tant role. It can be expected that a Brownian dynamics simu-
lation is somewhat less dependent on the system size than
Counting all pairs in the simulation box givésvice) g(r). molecular dynamics simulations, because velocity correla-

In a finite box this is not completely correct. Because the boxions induced by the periodic boundaries are absent and only
containsN particles, the number of particles that can bespatial correlations remain. Even with 32 particles reason-
found elsewhere in the box when one patrticle has been fixedble results were obtained at most volume fractions, although
in the origin, isN— 1. To obtain a pair distribution function the system in this case approximately consists of three par-
that approaches 1 at large separation or low volume fractionicles in all directions. If the particles are in a random state
we should normalizg with N—1 instead ofN. This correc- (¢<0.494), hardly any influence of the box size was found
tion is negligible for large numbers of particles. for N=108. Nevertheless, most simulations were performed
The perturbation of the pair distribution function is less with 256 to 2048 particles. Fap>0.49 the influence of the
easily found due to statistical error for two reasons. First, théox size will increase, because of the possibility(jértial)
perturbation is small by itself at low shear rates, because it ifransitions towards states with long-range order.
proportional to the shear rate, and second, the perturbation is Increasing the number of particles in the simulation re-
not only a function ofr but of r. However, the latter objec- duces the statistical error in the pair distribution function of
tion can be avoided, because in Sec. Il B we showed that thene time step, possibly allowing a smaller number of simu-
viscosity in our model is determined completely by the am-lation time steps. However, increasing the number of par-
plitude of a combination of spherical harmonics proportionalticles reduces the error in the pair distribution function con-
to cosgsingsir’d. The amplitude functiorg,(r) can be tact value only to a moderate extent: although the number of
found from g(r) by multiplying with cosgsingsir?d  pairs to determine the pair distribution function increases
(=xylr?) and integrating over all anglesandé. Thus, ifgis  quadratically with the number of particlé$ the number of
written pairs at contactincreases only linearly witiN, because the
number of neighbors at contact is limited to 12 at closest
Xy packing. So to reduce statistical error in the pair distribution
g(r)=go(r)+ r—zgl(f), (4.2 function contact value, increasing the number of time steps is
more efficient than increasing the number of particles, be-
the number of particles in a volundr is cause of the more than linear increase in computation time
with the number of particles.

X
dNr,¢,a:n( 9o(r)+ —)2/91(”) r?sing drde dé. 2. Simulation time
r

4.3 A simulation run is characterized by the square root of the
varianced= \2A r of the Gaussian distribution from which

After multiplying with cos¢ sin ¢ sir’é and integration over the random displacements are taken. This is equivalent to
the angles, only the second term gives a contribution fixing the time stepAr. The varianceé is the average
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squared displacement of a particle and must be chosen to lsémulations were done on the SGI Power Challenge com-
small compared to the particle diameter. Typical valuessfor puter with R10000 processors at the University of Twente.
vary from 0.1 at very low volume fractions to 0.00é5at

very high volume fractions. At high volume fraction small C. Equilibrium simulations

displacement steps are favorable, because the probabilities of . o )

an overlap of three or more particlésomputationally ex- In Fig. 1(a) we already plotted a pair distribution function
pensivé and of an overlapping passage of two particies with-obtained in an equilibrium simulation at zero shear rate. This

out collision detection, increase at high volume fractions. Inc@n P& compared with known results to check the simulation

most simulations we fixed the time step @r=0.5 algorithm. Our simulgtion rc_aprqduces fqr instance fthe con-
X 10 *r, by choosings=0.01r, where o is the particle tact values of the pair dlstrlb_uuon function as predlc_tt.ed.by
diameter. For comparison, after conversion of units this igh€ Carnahan-Starling equation accurately. The equilibrium
five times smaller than the time step of Schaft8]. phase b_ehawor of hard—spher(_a systems was al_ready investi-
Equally important is the number of time steps in onedated with the S_chaertl and Slllescg algorithm in Rdb].
simulation run. The number of time steps is both influenced! "€refore, we will only quote some important results, before

by requirements of reducing the statistical error and by durning our attention to the nonequilibrium simulations and

wish to capture transient behavior. the shear viscosity.

The second important parameter is the shear rate of the N €quilibrium the simulations should be equivalent to
flow, determined by the Téet number Pe. Monte-Carlo simulations of a hard-sphere gas. The maxi-

mum close packing fraction of hard spheres¢ig=0.74,
3. Initial state while the random close packing volume fraction ¢$cp
L , i ~0.63. In hard-sphere gas systems a freezing transition has
The initial state is created for small volume fractions by paep reported at volume fractiom=0.494+0.002 by
random positioning of spheres, avoiding overlap configurayyoyer and Reg46], and a melting transition of the crystal-
tions. At high volume fractions ¢>0.25) this procedure |ine hexagonal phase at=0.545+0.002. These results were
does not yield an initial solution within reasonable time, and.nfirmed by the computer simulations of Schadab]
a different method must be used. A first possibility is 10 5imeq at establishing the phase behavior of colloidal suspen-
generate an fcc structure. This requires a number of relaxsions for the same model as described in this paper.
athn time steps before the actual samplmg is started, during These observations provide a setting for the nonequilib-
which the fcc state melts or not. Because it is unknown hOV\ﬁum simulations. In the random fluid state, for 0.494, the
long the_meltmg will take, and aIS(_) how the completion of ;¢ steady shear viscosity exists and can be found from the
lthe'meltlnghshould be megiuretlj, It is _bettler_to use the folgjyiations. In a solid state, by definition an object does not
owing method. Starting with a large simulation box and ag,y and resists small, steady deformations. The zero steady
small vol_umr_a fractl_on, the s_lmulat|on box is _grac_jually _de- shear viscosity as we defined it does not exist. In any coex-
creased in size until the desired volume fraction is attainedgionce region between fluid and solid, part of the system is

The re_sult is a random initial state. This proced_ure _actuall){n a fluid state, and for large systems we expect the possibil-
works in practice because after each decrease in size of th

imulation b h loidal o I q ity of flowing. In a finite simulation box, however, a solid
simulation box, the colloidal particles are allowed to move . gier may percolate over the simulation box and create a

with the elastic collision correction method. This always 4,6 state through the periodic boundary condition. There-
generates a new, nonoverlapping configuration. Because thge aithough a zero steady shear viscosity should exist in

mfluenge of the |n|t|_al condition can be. con&derablejorthe coexistence region, it may be more difficult to find in the
simulations at very high volume fractions in or near equilib- ;.\ J1ations as the volume fraction increases.

rium, we used the second method to obtain an initially ran-" e occurrence of the coexistence region is still well be-

dom initial state. Nevertheless, in our simulations we moniyq.\ the highest volume fractions reported in the measure-

tored changes in average values carefully to detect transieffa s of the steady shear viscosity of Van der Werff and De

behavior. At almost all volume fractions and shear rates iniy if [3]. The experimental zero shear viscosity curve dis-

tially transient behavior V‘ias observgd. - lation size infiy P'2YS NO strange behavior at the volume fractions of this
Summarizing we conclude that the simulation size influ-¢qeistence region. An abrupt change in the characteristic

ences both the finite-size errors and the statistical error in thg,.oss however. has been reportéd] at a volume fraction

pair distribution function. The simulation length influences 20_5’ and Was,associated with hard-sphere phase behavior.

both the statistical error and the possibility of detection OfTh h teristic st is the st t the sheakrdte
time-dependent behavior. Finally, the initial state influences € characteristic stress Is the stress at tne shearyg

the time dependertphysica) behavior, but in a way strongly Which 7(v¢)= 3 [ 7(0)+ 7(=)].
affected by the simulation size. In practice, some balance has
to be found between simulation size and simulation length. D. Nonequilibrium simulations
A switch was built into the program to run a two-
dimensional version. The two-dimensional version was used
to view a real-time simulation on screen to check the imple- In nonequilibrium simulations there are no well-
mentation of the periodic boundary conditions and the colli-established results to which our results can be compared and
sion algorithm. Another advantage is that the simulations rurthecked. An important check is to reproduce the exact low
faster, which is convenient in the development stage of thehear, low-density perturbation of the pair distribution func-
program. Some useful equations for a two-dimensional sugion, given by Eq.(2.7). The low-density solution was veri-
pension of hard spheres are given in the Appendix. Thdied for both the three- and two-dimensional simulations. In

1. Pair distribution function
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FIG. 3. Perturbation of the pair distribution function in steady
shear flow, the functiong,(r), and the ratiag,(r)/go(r), for Pe
clet number Pe 0.5 at a volume fractiorp=0.45, in a simulation

of 512 particles.

A similar simulation run with the Schaertl and Sillescu
overlap correction method predicted a contact valuegy of
different by 30%. This confirms the expectations stated in
Sec. lll B that in nonequilibrium simulations the effect of the
overlap correction methods is more pronounced than in equi-
librium simulations.

2. Shear viscosity

shear flowg,(r) at a Pelet number P& 0.5 and for volume frac-
tions ¢=0.01 (open circley and ¢=0.02 (pluses, in a simulation
of 108 particles. The total simulation time is 15 @Q0 Also, the
low-density solution of Eq(2.7) is plotted(solid line). See the text
for a discussion of this plota) Linear plot andb) double logarith-
mic plot.

In several steady shear simulations we have determined
the contact value of the perturbation of the pair distribution
function, and calculated the relative shear viscosity with Eq.
(2.4) as a function of the Riet number. The result is shown
in a flow curve in Fig. 4, in which the shear viscosity is
plotted as a function of shear rate. The contact values of the
Fig. 2(a) the result is shown for a steady shear simulation afunction g,(r) were determined up to a statistical error of
volume fractionsp=0.01 ande=0.02, and a dimensionless
shear rate of Pe0.5. The computational work required for
these plots is considerable. The total simulation time was
=15000, including a relaxation time af=7000. This cor-
responds to~3x10® time steps with 108 particles andl
=0.01, taking about ten days on a single CPU of a SGI
Power Challenge computer with R10000 processors. The sta-
tistical error is still large forr=2, and only in the range
betweerr =1 andr =2 linearity in ¢ is visible. This is more
clear in the double logarithmic plot of g4(r) in Fig. 2b).
However, in view of the statistical error, and of the develop-
ment of the statistical error in time, we are confident that the
theoretical low-density limit is approached eventually.

As a first example of the perturbation of the pair distribu-
tion function g4(r) at higher volume fractions, we deter-
mined g(r) at a shear rate Re0.5 and a volume fraction
¢=0.45. At this volume fraction the particles are still in a
random state. At these high volume fractiogg(r) inherits
much of the structure of the equilibrium pair distribution
function go(r), although the ratiog,(r)/gg(r) is not a
simple function. In Fig. 3 we have plotted. the functhns FIG. 4. Steady-state shear viscosity as a function of thaePe
gl(r)_ andga(r)/go(r). It can be seen that_ this perturbation number Pe for various volume fractions, in simulations of 1372 or
function, calculated _as_dlscussed ?bove’ 1S rath_er_ smooth, Bhas particles. For comparison, two fit curves representing mea-
the sense that statistical fluctuations are sufficiently supsyrements of van der Werff and De Kr(i§] are plotted for system
pressed after f0time steps, corresponding tarp. This is 5314 atp=0.419(dashed lineand o= 0.538(dash-dotted ling At
somewhat surprising, because we are only considering smailshear rate of Re15.0 the viscosity drops sharply at high volume
perturbations from equilibrium. Nevertheless, at lower sheafractions as the result of a transition to a state of hexagonally or-
rates the number of time steps required to sufficiently reduceered strings with the strings in the direction of the flow. See also
statistical error increases rapidly. the text.
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3%. This error is also plotted, but is hardly discernible. The 10 . ; . . . .
actual deviation of the viscosity from the model value is
more related to finite-size effects and to transient or time-
dependent behavior of the system. For the results presented
in Fig. 4 we tried to eliminate the latter errors as much as
possible by increasing the simulation box as much as needed,
and by monitoring transient behavior. If nontransient time-
dependent behavior was observed, the averaging interval was
extended to capture an appropriate average value. We will
discuss this shortly. For comparison, two fit curves repre-
senting measurements of Van der Werff and De Kf8]fare
plotted in Fig. 4 as dashed and dash-dotted lines. The experi-
mental curves plotted correspond to the data for silica par-
ticles in cyclohexane(system SJ14 at volume fractions
0.419 and 0.538.

(a) High shear rates and the shear thinning regidrne
first observation from Fig. 4 is that in general the results do
not correspond to the measurements. This is mainly caused
by the failure of the model to predict the shear viscosity at
high Pelet numbers, which is dominated by hydrodynamic
interactions. Therefore, in our simulations shear thinning be-
havior is more pronounced than in the measurements. If the
behavior of the viscosity at high shear rates is disregarded or
corrected, e.g., as ib] with an empiricaly.,, it is seen that

FIG. 5. Relative shear viscosity as a function of the volume
. S L fraction ¢ from Brownian dynamics computer simulations in the
the location of the shear thinning region is only roughly cor- .~ i yna comp ;

limit of zero shear ratéopen circley in comparison to the mea-

rect. . o . )
. . surementg+) on four different systems of silica particles in cyclo-
. At a shear rate_ of Pe15.0 the viscosity dr_o_ps sharply at hexane by Van der Werff and De KrJi8]. Note that fore>0.54
high volume fractions as the result of a transition to a state of o yaiue'is not the plateau value.

hexagonally ordered strings with strings in the direction of
the flow. This has been observed by many authors, e.gdominant, the suspension model performs best. Due to the
[48,49 and has been the subject of extensive research faromputational efficiency of the Brownian dynamics algo-
some time[5,50,17. The lower volume fractions display rithm, allowing many particles and many time steps, viscosi-
similar transitions at higher shear rates. Transitions to statees can be “measured” from the simulation at quite low
of long-range ordered strings were also observed at lowdPeclet numbers.
shear rates in smaller simulation boxes. However, such tran- On the Newtonian plateau the viscosity is constant as a
sitions could be repressed considerably by increasing thiinction of the shear rate and the perturbation amplityde
simulation box. This means that the long-range ordereds linear in the shear rate. In Fig. 4 it is seen that the New-
states are at least to some extent an artifact of the finiteonian plateau has been attained for volume fractions up to
simulation size, although they are certainly induced by thep=0.54. We have plotted the shear viscosity at the lowest
shearing motion. shear rate simulated, as a function of volume fraction in Fig.

Shear thickening as observed by several authors with. The experimental data on the zero shear viscosity for all
simulation models including hydrodynamic interactionsfour experimental systems of Van der Werff and De Kruif
[17,18 is not seen in our simulations. The shear induced3] are plotted for comparison. We did not use a fitting pro-
ordering in strings in the direction of the flow seems a stablecedure as suggested by these authors to obtain a zero shear
state in our model suspension, and breaking up of strings afiscosity foro>0.54, because it is nat priori clear that the
high Pelet numbers was not observed. Although the sheashape of the flow curve is preserved across the hard-sphere
thickening was not seen in the experiments of Van der Werfphase transition region.
and De Kruif, it has been established in more recent experi- Figure 5 shows that, as compared to the experiments, the
ments[15,16. viscosities obtained from the computer simulations fail at

Apparently the model without hydrodynamic interactionsintermediate and low volume fractions. Only at high volume
lacks essential interaction mechanisms at higbl®®enum-  fractions does the model viscosity rapidly catch up with the
bers, and results for this model should be interpreted wittexperimental viscosity.
care in this regime. The regime at high rates, however, is not These results suggest that at low volume fractions hydro-
the main goal of this paper for a different reason. Althoughdynamic effects give the most important contribution to the
the simulation algorithm is stable up to very high shear rateshear viscosity in a real suspension, which can be expected
if the time step is accordingly decreased, the validity of thebecause thep? term in the expression for the viscosity is
superposition of diffusion and velocity fielBec. lllA) is  incorrect when compared to the?® result for the zero shear
only rigorous at small shear rates. viscosity of Batchelor and Gredi28,2],

(b) Low shear regionln this paper we are particularly
interested in the low shear viscosity, because it is expected

n .S )
that in the low shear regime, where Brownian motion is %_1+ 2¢+6'2¢ ' “.5
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gions are easily of the same size as the simulation box, an
1 additional, lower limit on the simulation size is set by the
| demand to capture these regions entirely. As an example, we
feel that this requirement has begearcely met in Fig. 7 in
a simulation of 2048 particles. Domainlike states can be ex-
pected in the coexistence region, but in a similar simulation
-20007 s w0 10 20 o a0 @0 40 a0 at zero shear rate, a transition occurred at a later (80e,).

K Also, the simulation box displayed almost global order. A

FIG. 6. Relative shear viscosity as a function of dimensionles$SMall shearing motion apparently accelerates structural relax-
time at a Pelet number Pe0.0015 and a volume fractiop ~ ation, and decreases the average domain size.
=0.58, in a simulation of 2048 particles. After 40 (8 10°) the It will be interesting to study the relations between the
system transfigures from a mostly random state towards a state wiftuctuations in the shear viscosity, the sizes and shapes of the
regions of local order. No “final” state is corroborated for the ordered regions, and the shear rate. This is subject of current
duration of this simulation. research. It is in this field that the present suspension model

may be a powerful tool, even though the results in this paper

Moreover, because the model viscosity is even larger thadémonstrate the inadequacy of the hard-sphere suspension
the experimental viscosity fop>0.54, the results suggest model wnhoutl hydrodynamic interactions  to describe the
that at high volume fractions the hydrodynamic interactiondigh shear regime of real suspensions.
prevent the hard-sphere interactions from becoming too
dominant. However, this is somewhat less conclusive, be-
cause the errors in the measurements of volume fractions or
deviations from monodispersity both have large effects on In this paper we have discussed a model of hard-sphere
the viscosity at volume fractions close to the close packinguspensions in which hydrodynamic interactions are ne-
volume fractiong,.,~0.63. glected, but single-particle hydrodynamics and hard-sphere

Also in the low shear region phase transitions are resporinteractions are retained. The aim was to treat this model
sible for transient behavior. For volume fractions beyond theconsistently, and with no additional approximations, to es-
start of the phase coexistence regipi 0.494 transitions to  tablish its merits in describing the rheology of real suspen-
states of partially crystalline structure were observed. In consijons.
trast to the high shear transitions described above, the system After discussing an expression for the shear viscosity, we
does not evolve towards @netastable steady state of hex- described a simulation algorithm that is both accurate and
agonally layered strings at small shear rates, but rather to @fficient to simulate the model suspension. This simulation
collection of regions of hexagonal packing. In Fig. 6 thealgorithm is consistent with the expression for the viscosity.
history of the relative shear viscosity is plotted ip=0.58  In addition, the algorithm was compared with two alterna-
and Pe=0.0015. After being in a random, fluidlike state for tive, similar algorithms, and was shown to be better suited
about 4@, , the system tranfigures rather sharply into a statdor the purpose of determining the excluded volume effects
with ordered regions. A typical example of these regions idn a suspension dominated by Brownian motion. In equilib-
shown in Fig. 7. rium simulations the algorithm is able to reproduce the hard-

A single viscosity can be ascribed to such systems only isphere pair distribution function accurately, and in nonequi-
the averaging time interval is long enough, because the fludibrium simulations the exact low-shear, low-density limit of
tuations in Fig. 6 occur on a much longer time scale than théhe perturbation of the pair distribution function could be
fluctuations in the purely random state. Correct treatment ofomputed.
these states requires either a strong increase in simulation The algorithm was used to study the steady shear viscos-
length or in simulation size. Moreover, because ordered reity. The validity of the model of the hard-sphere suspension

V. CONCLUSIONS
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FIG. 7. Typical snapshot of the simulation box of a simulation of 2048 particles atlatPember Pe 0.0015 for projection on the three
Cartesian planes. The flow is in th¢ direction and the velocity gradient is in thé direction. The volume fraction i =0.58. For
transparency, the particles are not drawn at their actual size. This snapshot was tekat®@t see also Fig. 6.
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was tested through comparison with the experimental worlsimulations, with even more particles and perhaps even
of Van der Werff and De Kruif. In general, it is concluded smaller shear rates, may be required to explore this area of
that the results of the hard-sphere model without hydrodythe shear viscosity satisfactorily. In this field computation-

namic interactions is disappointing. ally efficient models such as the one used in this paper may

In the nonequilibrium simulations we found that in the still provide valuable results that are relevant for real suspen-
intermediate and high shear regimes the model heavily ursions, although quantitatively correct results should not be
derestimates the shear viscosity of real suspensions. Thexpected.
shear thinning region is found only roughly at the correct
position. We have found shear induced ordering in strings at APPENDIX: TWO-DIMENSIONAL SUSPENSIONS
high shear rates as usual, but have not encountered shear ] ) L,
thickening. It is concluded that hydrodynamic interactions N two dimensions the volume fraction is=; 7o “N/V
indeed are non-negligible in these regimes at all volume fracfor & system of hard disks of diameter. The hexagonal
tions. close packing volume fraction ig,c,= /2:/3=0.907.

In the low shear limit we found that the zero shear vis- In__a two-dimensional system[r=(x,y) and r
cosity is underestimated at low and moderate densities, as vX?+y?], the Smoluchowski equation for the low-density
compared to measurements of a real suspension, but the vigair distribution function is Eg(2.5). In a weak flow expan-
cosity is overestimated as compared to the experimental vasion, the pair distribution function will have the form
ues at high densities in the phase transition regime. There is .

a possibility that the experimental systems fail at extremely h(r)=tho(r)+2 Pe cospsineg i (r). (A1)
high vqlume fractions, as they do not consist of truly hard,—l-he two-particle Smoluchowski equation simplifies to
monodisperse spheres, and that the measured shear viscosity

is inaccurate. A more likely explanation is that the hydrody- 1 4

namic interactions help the colloidal particle to find an easier :,//1’+—¢ri——21,/;1=0 (A2)
way through the sample. This would be, again, a fundamen- ' r

tal hydrodynamic property of the suspension. VoA . . L
A problem when determining the zero shear viscosity isand ¥1(1)=1. The solution of this equation is

that at high volume fractions the Newtonian plateau is in- 1
creasingly difficult to find. The simulation times increase (r)=——, (A3)
rapidly with decreasing shear rate in order to overcome sta- 2r?

tistical noise. Furthermore, the simulation box must be cho-

sen large to avoid finite size errors in the phase transitiof?Nich predicts a nonequilibrium low shear, low-density con-

_1 : : - 1
regime. It was found that at high volume fractions the behayi@ct value of—3. In three dimensions this was 5. The

ior is complex, with a strong interplay of box size, shear rate'equations corresponding to the three-dimensional equations
and spontaneous or shear induced phase transitions. The d%:1 and(4.4) are
istence of a zero steady shear viscosity has been established dN, = ny(r)2ar2dr (A4)
in our simulations for volume fractiong up to 0.54. '

The complete phase behavior of the hard-sphere system #nd

the region fore>0.494, in relation to the shear rate and the

simulation box size, requires more attention than is possible —1
in this paper. This is a subject of current research. More AN, =7 mnya(rjrdr. (A5)
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